Skip to main content
Log in

Experimental Investigation and Numerical Modeling of Enhanced DNAPL Solubilization in Saturated Porous Media

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The accidental release of organic contaminants in the form of non-aqueous phase liquids (NAPLs) into the subsurface is a widespread and challenging environmental problem. Successful remediation of sites contaminated with NAPLs is essential for the protection of human health and the environment. One technology that has received significant attention is the injection of chemical additives (such as cosolvents) upgradient of the NAPL zone for the enhanced dissolution and mobilization of the NAPL mass. A key process influencing the effectiveness of NAPL mass recovery is the interphase mass transfer which is the transfer of components across the interface separating the different phases. In this work, we examine the impact of cosolvent content, flushing solution velocity, and injection pattern (continuous versus intermittent) on the interphase mass transfer rate. A series of flushing experiments were conducted using an intermediate-scale tank which allows for the impact of density variations on DNAPL mobility. The target DNAPL selected in this study was trichloroethylene while the flushing solutions consisted of ethanol–water mixtures with ethanol contents ranging from 0 to 50% by volume. The experimental results were also modeled using the UTCHEM multiphase flow simulator that was modified to model cosolvent flushing. Results show that the observed interphase mass transfer coefficient, expressed as a modified Sherwood number, was much lower than predicted based on published correlations developed under idealized conditions. Moreover, interphase mass transfer rate decreased with time, indicating that a single interphase mass transfer coefficient cannot accurately model the entire flushing solution. The data also suggest that the interphase mass transfer coefficient is dependent on cosolvent content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abriola, L. M. (1989). Modeling multiphase migration of organic chemicals in groundwater systems—a review and assessment. Environmental Health Perspectives, 83, 117.

    CAS  Google Scholar 

  • Agaoglu, B., Scheytt, T., & Copty, N. K. (2012). Laboratory‐scale experiments and numerical modeling of cosolvent flushing of multi-component NAPLs in saturated porous media. Journal of Contaminant Hydrology, 140, 80–94.

    Article  Google Scholar 

  • Agaoglu, B., Copty, N. K., Scheytt, T., & Hinkelmann, R. (2015). Interphase mass transfer between fluids in subsurface formations: a review. Advances in Water Resources, 79, 162–194.

    Article  CAS  Google Scholar 

  • Akyol, N. H., Yolcubal, I., & Yüksel, D. I. (2011). Sorption and transport of trichloroethylene in caliche soil. Chemosphere, 82(6), 809–816.

    Article  CAS  Google Scholar 

  • Aydin, G. A., Agaoglu, B., Kocasoy, G., & Copty, N. K. (2011). Effect of temperature on cosolvent flooding for the enhanced solubilization and mobilization of NAPLs in porous media. Journal of Hazardous Materials, 186(1), 636–644.

    Article  CAS  Google Scholar 

  • Brooks, R. H., & Corey, A. T. (1966). Properties of porous media affecting fluid flow. Journal of the Irrigation and Drainage Division, 92(2), 61–90.

    Google Scholar 

  • Brooks, M. C., Annable, M. D., Rao, P. S. C., Hatfield, K., Jawitz, J. W., Wise, W. R., & Enfield, C. G. (2004). Controlled release, blind test of DNAPL remediation by ethanol flushing. Journal of Contaminant Hydrology, 69(3), 281–297.

    Article  CAS  Google Scholar 

  • Brusseau, M. L., Zhang, Z., Nelson, N. T., Cain, R. B., Tick, G. R., & Oostrom, M. (2002). Dissolution of nonuniformly distributed immiscible liquid: intermediate-scale experiments and mathematical modeling. Environmental Science and Technology, 36, 1033–1041.

    Article  CAS  Google Scholar 

  • Childs, J., Acosta, E., Annable, M. D., Brooks, M. C., Enfield, C. G., Harwell, J. H., & Shiau, B. (2006). Field demonstration of surfactant-enhanced solubilization of DNAPL at Dover Air Force Base, Delaware. Journal of Contaminant Hydrology, 82(1), 1–22.

    Article  CAS  Google Scholar 

  • Chiou, C. T., Kile, D. E., Brinton, T. I., Malcolm, R. L., Leenheer, J. A., & MacCarthy, P. (1987). A comparison of water solubility enhancements of organic solutes by aquatic humic materials and commercial humic acids. Environmental Science & Technology, 21(12), 1231–1234.

    Article  CAS  Google Scholar 

  • Corey, A. T. (1994). Mechanics of immiscible fluids in porous media. Water Resources Publication.

  • Delshad, M., Pope, G. A., & Sepehrnoori, K. (1996). A compositional simulator for modeling surfactant enhanced aquifer remediation, 1 formulation. Journal of Contaminant Hydrology, 23(4), 303–327.

    Article  CAS  Google Scholar 

  • Dokou, Z., & Pinder, G. F. (2011). Extension and field application of an integrated DNAPL source identification algorithm that utilizes stochastic modeling and a Kalman filter. Journal of Hydrology, 398(3), 277–291.

    Article  CAS  Google Scholar 

  • Eichel, H., Helmig, R., Neuweiler, I., & Cirpka, O. A. (2005). Upscaling of two-phase flow processes in porous media. In Upscaling multiphase flow in porous media (pp. 237–257). Springer Netherlands.

  • Geng, L., Chen, Z., Chan, C. W., & Huang, G. H. (2001). An intelligent decision support system for management of petroleum-contaminated sites. Expert Systems with Applications, 20(3), 251–260.

    Article  Google Scholar 

  • Hand, D. B. (1939). Dineric distribution: I. The distribution of a consolute liquid between two immiscible liquids. Journal of Physics and Chemistry, 34, 1961–2000.

    Article  Google Scholar 

  • Hoffman, F. (1993). Ground‐water remediation using “Smart Pump and Treat”. Ground Water, 31(1), 98–106.

    Article  CAS  Google Scholar 

  • Hofstee, C., Ziegler, C. G., Trötschler, O., & Braun, J. (2003). Removal of DNAPL contamination from the saturated zone by the combined effect of vertical upward flushing and density reduction. Journal of Contaminant Hydrology, 67(1), 61–78.

    Article  CAS  Google Scholar 

  • Imhoff, P. T., & Miller, C. T. (1996). Dissolution fingering during the solubilization of nonaqueous phase liquids in saturated porous media: 1. Model predictions. Water Resources Research, 32(7), 1919–1928.

    Article  CAS  Google Scholar 

  • Jawitz, J. W., Sillan, R. K., Annable, M. D., Rao, P. S. C., & Warner, K. (2000). In-situ alcohol flushing of a DNAPL source zone at a dry cleaner site. Environmental Science & Technology, 34(17), 3722–3729.

    Article  CAS  Google Scholar 

  • Keely, J. F., & Boulding, J. R. (1989). Performance evaluations of pump-and-treat remediations.

  • Khaitan, S., Kalainesan, S., Erickson, L. E., Kulakow, P., Martin, S., Karthikeyan, R., & Ng’oma, C. (2006). Remediation of sites contaminated by oil refinery operations. Environmental Progress, 25(1), 20–31.

    Article  CAS  Google Scholar 

  • Kokkinaki, A., O’Carroll, D. M., Werth, C. J., & Sleep, B. E. (2013). Coupled simulation of DNAPL infiltration and dissolution in three‐dimensional heterogeneous domains: process model validation. Water Resources Research, 49(10), 7023–7036.

    Article  Google Scholar 

  • Li, B., & Fu, J. (1992). Interfacial tensions of two-liquid-phase ternary systems. Journal of Chemical and Engineering Data, 37(2), 172–174.

    Article  CAS  Google Scholar 

  • Liang, H., & Falta, R. W. (2008). Modeling field-scale cosolvent flooding for DNAPL source zone remediation. Journal of Contaminant Hydrology, 96(1), 1–16.

    Article  CAS  Google Scholar 

  • Lunn, S. R., & Kueper, B. H. (1999). Manipulation of density and viscosity for the optimization of DNAPL recovery by alcohol flooding. Journal of Contaminant Hydrology, 38(4), 427–445.

    Article  CAS  Google Scholar 

  • Maji, R., & Sudicky, E. A. (2008). Influence of mass transfer characteristics for DNAPL source depletion and contaminant flux in a highly characterized glaciofluvial aquifer. Journal of Contaminant Hydrology, 102(1), 105–119.

    Article  CAS  Google Scholar 

  • Martel, R., Gélinas, P. J., & Desnoyers, J. E. (1998). Aquifer washing by micellar solutions: 1: optimization of alcohol–surfactant–solvent solutions. Journal of Contaminant Hydrology, 29(4), 319–346.

    Article  CAS  Google Scholar 

  • Miller, C. T., Poirier‐McNeil, M. M., & Mayer, A. S. (1990). Dissolution of trapped nonaqueous phase liquids: mass transfer characteristics. Water Resources Research, 26(11), 2783–2796.

    Article  Google Scholar 

  • Miller, C. T., Gleyzer, S. N., & Imhoff, P. T. (1998). Numerical modeling of NAPL dissolution fingering in porous media. Physical Nonequilibrium in Soils: Modeling and Application 389–415.

  • Nambi, I. M., & Powers, S. E. (2003). Mass transfer correlations for nonaqueous phase liquid dissolution from regions with high initial saturations. Water Resources Research, 39(2).

  • Oostrom, M., Dane, J. H., & Wietsma, T. W. (2006). A review of multidimensional, multifluid intermediate-scale experiments. Vadose Zone Journal, 5(2), 570–598.

    Article  CAS  Google Scholar 

  • Panagos, P., Hiederer, R., Van Liedekerke, M., & Bampa, F. (2013). Estimating soil organic carbon in Europe based on data collected through an European network. Ecological Indicators, 24, 439–450.

    Article  CAS  Google Scholar 

  • Pennell, K. D., Pope, G. A., & Abriola, L. M. (1996). Influence of viscous and buoyancy forces on the mobilization of residual tetrachloroethylene during surfactant flushing. Environmental Science & Technology, 30(4), 1328–1335.

    Article  CAS  Google Scholar 

  • Pope, G. A., & Nelson, R. C. (1978). A chemical flooding compositional simulator. Society of Petroleum Engineers Journal, 18(05), 339–354.

    Article  CAS  Google Scholar 

  • Powers, S. E., Abriola, L. M., & Weber, W. J. (1992). An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: steady state mass transfer rates. Water Resources Research, 28(10), 2691–2705.

    Article  CAS  Google Scholar 

  • Powers, S. E., Abriola, L. M., Dunkin, J. S., & Weber, W. J. (1994a). Phenomenological models for transient NAPL-water mass-transfer processes. Journal of Contaminant Hydrology, 16(1), 1–33.

    Article  CAS  Google Scholar 

  • Powers, S. E., Abriola, L. M., & Weber, W. J. (1994b). An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: transient mass transfer rates. Water Resources Research, 30, 321–332.

    Article  CAS  Google Scholar 

  • Puls, R. W., Paul, C. J., & Powell, R. M. (1999). The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: a field test. Applied Geochemistry, 14(8), 989–1000.

    Article  CAS  Google Scholar 

  • Saba, T., & Illangasekare, T. H. (2000). Effect of groundwater flow dimensionality on mass transfer from entrapped nonaqueous phase liquid contaminants. Water Resources Research, 36(4), 971–979.

    Article  CAS  Google Scholar 

  • Saba, T., Illangasekare, T. H., & Ewing, J. (2001). Investigation of surfactant-enhanced dissolution of entrapped nonaqueous phase liquid chemicals in a two-dimensional groundwater flow field. Journal of Contaminant Hydrology, 51(1), 63–82.

    Article  CAS  Google Scholar 

  • Salanitro, J. P., Johnson, P. C., Spinnler, G. E., Maner, P. M., Wisniewski, H. L., & Bruce, C. (2000). Field-scale demonstration of enhanced MTBE bioremediation through aquifer bioaugmentation and oxygenation. Environmental Science & Technology, 34(19), 4152–4162.

    Article  CAS  Google Scholar 

  • Shah, F. H., Hadim, H. A., & Korfiatis, G. P. (1995). Laboratory studies of air stripping of VOC-contaminated soils. Soil and Sediment Contamination, 4(1), 93–109.

  • Soga, K., Page, J. W. E., & Illangasekare, T. H. (2004). A review of NAPL source zone remediation efficiency and the mass flux approach. Journal of Hazardous Materials, 110(1), 13–27.

    Article  CAS  Google Scholar 

  • St-Pierre, C., Martel, R., Gabriel, U., Lefebvre, R., Robert, T., & Hawari, J. (2004). TCE recovery mechanisms using micellar and alcohol solutions: phase diagrams and sand column experiments. Journal of Contaminant Hydrology, 71(1), 155–192.

    Article  CAS  Google Scholar 

  • Stroo, H. F., & Ward, C. H. (Eds.). (2010). In situ remediation of chlorinated solvent plumes. Springer Science & Business Media.

  • Stroo, H. F., Unger, M., Ward, C. H., Kavanaugh, M. C., Vogel, C., & Leeson, A. (2003). Remediating chlorinated solvent source zones. Environmental Science and Technology, 37, 224A–230A.

    Article  CAS  Google Scholar 

  • Tick, G. R., & Rincon, E. A. (2009). Effect of enhanced-solubilization agents on dissolution and mass flux from uniformly distributed immiscible liquid trichloroethene (TCE) in homogeneous porous media. Water, Air, & Soil Pollution, 204(1–4), 315–332.

    Article  CAS  Google Scholar 

  • Tick, G. R., Harvell, J. R., & Murgulet, D. (2015). Intermediate-scale ınvestigation of enhanced-solubilization agents on the dissolution and removal of a multicomponent dense nonaqueous phase liquid (DNAPL) source. Water, Air, & Soil Pollution, 226(11), 1–21.

    Article  CAS  Google Scholar 

  • U.S.EPA Epa/542/R-04/015. 2004. Cleaning up the nation’s waste sites: markets and technology trends. 338.

  • Vogan, J. L., Focht, R. M., Clark, D. K., & Graham, S. L. (1999). Performance evaluation of a permeable reactive barrier for remediation of dissolved chlorinated solvents in groundwater. Journal of Hazardous Materials, 68(1), 97–108.

    Article  CAS  Google Scholar 

  • Wang, X., & Brusseau, M. L. (1993). Solubilization of some low-polarity organic compounds by hydroxypropyl-. beta.-cyclodextrin. Environmental Science & Technology, 27(13), 2821–2825.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D. Aydin-Sarikurt and N. Copty gratefully acknowledge the financial support provided by the Scientific and Technological Research Council of Turkey (TUBITAK, project no. 113Y281) and Bogazici University Research Fund through Project 7682.

Z. Dokou and G. Karatzas gratefully acknowledge the European Union and the Greek State, Ministry of Education and Religious Affairs/General Secretariat for Research and Technology (O.P. Competitiveness and Entrepreneurship (EPAN II), ROP Macedonia—Thrace, ROP Crete and Aegean Islands, ROP Thessaly—Mainland Greece— Epirus, ROP Attica) for co-founding this project (14TUR-NAPLS).

The authors are also grateful to Dr. Ronald W. Falta for providing the modified version of UTCHEM program used in the model simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derya Aydin-Sarikurt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin-Sarikurt, D., Dokou, Z., Copty, N.K. et al. Experimental Investigation and Numerical Modeling of Enhanced DNAPL Solubilization in Saturated Porous Media. Water Air Soil Pollut 227, 441 (2016). https://doi.org/10.1007/s11270-016-3136-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3136-0

Keywords

Navigation