Skip to main content
Log in

Bioremediation of Petroleum-Contaminated Acid Soil by a Constructed Bacterial Consortium Immobilized on Sawdust: Influences of Multiple Factors

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Bioremediation has been widely applied to decontaminate petroleum-contaminated sites. However, successful bioremediation remains challenging due to complicated environmental factors that are present in petroleum-contaminated soil. Hence, in this study, we used a constructed bacterial consortium immobilized on sawdust through a series of microcosm experiments to identify the main factors affecting decontamination and the optimal conditions for the bioremediation of heavily petroleum-contaminated acid soil. The acid soil collected from a refinery was first improved with an ameliorant made from an industry residue. Then, an orthogonal experimental design (OED, L9 (34)) was employed to evaluate the effects of the main factors (total inoculum size, inoculation addition protocol, amounts of mixed surfactants, and amount of inorganic fertilizer) on the soil bioremediation. The removal of total petroleum hydrocarbons (TPH) reached the highest level (60 %) after 60 days under the optimal conditions of 2 % (w/w) of the immobilized consortium, delivered in three increments and 6 % (v/w) of SDS/TritonX-100 (a molar ratio of 2:1). The most significant negative factor was the inorganic fertilizer. The size and addition protocol of inoculant were positive factors, while the amounts of surfactants had a minimal impact. The addition of inorganic fertilizer could have caused excessive soil salinity and reduced the bioremediation effectiveness. Repeated applications of incremental doses are recommended, rather than a single bolus dose, to optimize the bioremediation of the contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aghamiri, S., Kabiri, K., & Emtiazi, G. (2011). A novel approach for optimization of crude oil bioremediation in soil by the Taguchi method. Journal of Petroleum & Environmental Biotechnology, 2(110), 2.

    Google Scholar 

  • Baek, K. H., Yoon, B. D., Kim, B. H., Cho, D. H., Lee, I. S., Oh, H. M., et al. (2007). Monitoring of microbial diversity and activity during bioremediation of crude oil-contaminated soil with different treatments. Journal of Microbiology and Biotechnology, 17(1), 67–73.

    CAS  Google Scholar 

  • Balba, M. T., Al-Awadhi, N., & Al-Daher, R. (1998). Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. Journal of Microbiological Methods, 32, 155–164.

    Article  CAS  Google Scholar 

  • Bayat, Z., Hassanshahian, M., & Cappello, S. (2015). Immobilization of microbes for bioremediation of crude oil polluted environments: a mini review. Open Microbiology Journal, 9, 48.

    CAS  Google Scholar 

  • Boopathy, R. (2000). Factors limiting bioremediation technologies. Bioresource Technology, 74(1), 63–67.

    Article  CAS  Google Scholar 

  • Bossert, L., & Bartha, R. (1984). The fate of petroleum in soil ecosystems. In Petroleum microbiology. New York: Macmillan.

    Google Scholar 

  • Castorena-Cortés, G., Roldán-Carrillo, T., Zapata-Peñasco, I., Reyes-Avila, J., Quej-Aké, L., Marín-Cruz, J., et al. (2009). Microcosm assays and Taguchi experimental design for treatment of oil sludge containing high concentration of hydrocarbons. Bioresource Technology, 100(23), 5671–5677. doi:10.1016/j.biortech.2009.06.050.

    Article  Google Scholar 

  • Chen, B., & Ding, J. (2012). Biosorption and biodegradation of phenanthrene and pyrene in sterilized and unsterilized soil slurry systems stimulated by Phanerochaete chrysosporium. Journal of Hazardous Materials, 229–230, 159–169. doi:10.1016/j.jhazmat.2012.05.090.

    Article  Google Scholar 

  • Chen, J. L., Wong, M. H., Wong, Y. S., & Tam, N. F. (2008a). Multi-factors on biodegradation kinetics of polycyclic aromatic hydrocarbons (PAHs) by Sphingomonas sp. a bacterial strain isolated from mangrove sediment. Marine Pollution Bulletin, 57, 695–702. doi:10.1016/j.marpolbul.2008.03.013.

    Article  CAS  Google Scholar 

  • Chen, X. P., Yi, X. Y., Tao, X. Q., Wu, R. R., Yang, C., & Dang, Z. (2008b). Screening and characterization of pyrene-degrading microbial. Chinese Journal of Environmental Engineering, 2(3), 413–417.

    CAS  Google Scholar 

  • Chen, J. L., Au, K. C., Wong, Y. S., & Tam, N. F. (2010). Using orthogonal design to determine optimal conditions for biodegradation of phenanthrene in mangrove sediment slurry. Journal of Hazardous Materials, 176, 666–671. doi:10.1016/j.jhazmat.2009.11.083.

    Article  CAS  Google Scholar 

  • Das, N., & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnology Research Intrnational, 2011. doi:10.4061/2011/941810.

  • de la Cueva, S. C., Rodríguez, C. H., Cruz, N. O. S., Contreras, J. A. R., & Miranda, J. L. (2016). Changes in bacterial populations during bioremediation of soil contaminated with petroleum hydrocarbons. Water, Air, & Soil Pollution, 227(3), 1–12.

    Google Scholar 

  • Dejonghe, W., Boon, N., Seghers, D., Top, E. M., & Verstraete, W. (2001). Bioaugmentation of soils by increasing microbial richness: missing links. Environmental Microbiology, 3(10), 649–657.

    Article  CAS  Google Scholar 

  • He, J. Y., & Shi, L. (2012). Modified flue gas desulfurization residue (MFGDR)—a new type of acidic soil ameliorant and its effect on rice planting. Journal of Cleaner Production, 24, 159–167. doi:10.1016/j.jclepro.2011.11.065.

    Article  CAS  Google Scholar 

  • Johnsen, A. R., Wick, L. Y., & Harms, H. (2005). Principles of microbial PAH-degradation in soil. Environmental Pollution, 133, 71–84. doi:10.1016/j.envpol.2004.04.015.

    Article  CAS  Google Scholar 

  • Kästner, M., Breuer Jammali, M., & Mahro, B. (1998). Impact of inoculation protocols, salinity, and pH on the degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of PAH-degrading bacteria introduced into soil. Applied and Environmental Microbiology, 64(1), 359–362.

    Google Scholar 

  • Kauppi, S., Sinkkonen, A., & Romantschuk, M. (2011). Enhancing bioremediation of diesel-fuel-contaminated soil in a boreal climate: comparison of biostimulation and bioaugmentation. International Biodeterioration and Biodegradation, 65(2), 359–368.

    Article  CAS  Google Scholar 

  • Komilis, D. P., Vrohidou, A.-E. K., & Voudrias, E. A. (2010). Kinetics of aerobic bioremediation of a diesel-contaminated sandy soil: effect of nitrogen addition. Water, Air, & Soil Pollution, 208(1–4), 193–208.

    Article  CAS  Google Scholar 

  • Kvenvolden, K., & Cooper, C. (2003). Natural seepage of crude oil into the marine environment. Geo-Marine Letters, 23(3–4), 140–146.

    Article  CAS  Google Scholar 

  • Leys, N. M., Bastiaens, L., Verstraete, W., & Springael, D. (2005). Influence of the carbon/nitrogen/phosphorus ratio on polycyclic aromatic hydrocarbon degradation by Mycobacterium and Sphingomonas in soil. Applied Microbiology and Biotechnology, 66, 726–736. doi:10.1007/s00253-004-1766-4.

    Article  CAS  Google Scholar 

  • Ma, X.-K., Ding, N., & Peterson, E. C. (2015). Bioaugmentation of soil contaminated with high-level crude oil through inoculation with mixed cultures including Acremonium sp. Biodegradation, 26(3), 259–269.

    Article  CAS  Google Scholar 

  • Ma, J., Yang, Y., Dai, X., Chen, Y., Deng, H., Zhou, H., et al. (2016). Effects of adding bulking agent, inorganic nutrient and microbial inocula on biopile treatment for oil-field drilling waste. Chemosphere, 150, 17–23.

    Article  CAS  Google Scholar 

  • Mao, X., Jiang, R., Xiao, W., & Yu, J. (2015). Use of surfactants for the remediation of contaminated soils: a review. Journal of Hazardous Materials, 285, 419–435. doi:10.1016/j.jhazmat.2014.12.009.

    Article  CAS  Google Scholar 

  • Margesin, R., & Schinner, F. (2001). Biodegradation and bioremediation of hydrocarbons in extreme environments. Applied Microbiology and Biotechnology, 56, 650–663. doi:10.1007/s002530100701.

    Article  CAS  Google Scholar 

  • Margesin, R., Hammerle, M., & Tscherko, D. (2007). Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: effects of hydrocarbon concentration, fertilizers, and incubation time. Microbial Ecology, 53, 259–269. doi:10.1007/s00248-006-9136-7.

    Article  CAS  Google Scholar 

  • Molina-Barahona, L., Rodríguez-Vázquez, R., Hernández-Velasco, M., Vega-Jarquín, C., Zapata-Pérez, O., Mendoza-Cantú, A., et al. (2004). Diesel removal from contaminated soils by biostimulation and supplementation with crop residues. Applied Soil Ecology, 27(2), 165–175. doi:10.1016/j.apsoil.2004.04.002.

    Article  Google Scholar 

  • Mrozik, A., & Piotrowska-Seget, Z. (2010). Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiology Research, 165(5), 363–375. doi:10.1016/j.micres.2009.08.001.

    Article  CAS  Google Scholar 

  • Obuekwe, C. O., & Al-Muttawa, E. M. (2001). Self-immobilized bacterial cultures with potential for application as ready-to-use seeds for petroleum bioremediation. Biotechnological Letters, 23, 1025–1032.

    Article  CAS  Google Scholar 

  • Paisio, C. E., Talano, M. A., González, P. S., Magallanes-Noguera, C., Kurina-Sanz, M., & Agostini, E. (2016). Biotechnological tools to improve bioremediation of phenol by Acinetobacter sp. RTE1. 4. Environmental Technology, 1–12.

  • Ramadan, M. A., El-Tayeb, O. M., & Alexander, M. (1990). Inoculum size as a factor limiting success of inoculation for biodegradation. Applied and Environmental Microbiology, 56, 1392–1396.

    CAS  Google Scholar 

  • Rao, R. S., Kumar, C. G., Prakasham, R. S., & Hobbs, P. J. (2008). The Taguchi methodology as a statistical tool for biotechnological applications: a critical appraisal. Biotechnology Journal, 3(4), 510–523.

    Article  CAS  Google Scholar 

  • Salanitro, J. P., Dorn, P. B., Huesemann, M. H., Moore, K. O., Rhodes, I. A., Rice Jackson, L. M., et al. (1997). Crude oil hydrocarbon bioremediation and soil ecotoxicity assessment. Environmental Science & Technology, 31(6), 1769–1776.

    Article  CAS  Google Scholar 

  • Sathishkumar, M., Binupriya, A. R., Baik, S. H., & Yun, S. E. (2008). Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium isolated from hydrocarbon contaminated areas. CLEAN – Soil, Air, Water, 36(1), 92–96. doi:10.1002/clen.200700042.

    Article  CAS  Google Scholar 

  • Schwartz, E., & Scow, K. M. (2001). Repeated inoculation as a strategy for the remediation of low concentrations of phenanthrene in soil. Biodegradation, 12, 201–207.

    Article  CAS  Google Scholar 

  • Simarro, R., González, N., Bautista, L. F., Molina, M. C., & Schiavi, E. (2012). Evaluation of the influence of multiple environmental factors on the biodegradation of dibenzofuran, phenanthrene, and pyrene by a bacterial consortium using an orthogonal experimental design. Water, Air, and Soil Pollution, 223, 3437–3444. doi:10.1007/s11270-012-1122-8.

    Article  CAS  Google Scholar 

  • Tang, X., He, L. Y., Tao, X. Q., Dang, Z., Guo, C. L., Lu, G. N., et al. (2010). Construction of an artificial microalgal-bacterial consortium that efficiently degrades crude oil. Journal of Hazardous Materials, 181, 1158–1162. doi:10.1016/j.jhazmat.2010.05.033.

    Article  CAS  Google Scholar 

  • Tao, X. Q., Lu, G. N., Dang, Z., Yang, C., & Yi, X. Y. (2007). A phenanthrene-degrading strain Sphingomonas sp. GY2B isolated from contaminated soils. Process Biochemistry, 42(3), 401–408. doi:10.1016/j.procbio.2006.09.018.

    Article  CAS  Google Scholar 

  • Thavasi, R., Jayalakshmi, S., & Banat, I. M. (2011). Effect of biosurfactant and fertilizer on biodegradation of crude oil by marine isolates of Bacillus megaterium, Corynebacterium kutscheri and Pseudomonas aeruginosa. Bioresource Technology, 102(2), 772–778.

    Article  CAS  Google Scholar 

  • Trindade, P. V. O., Sobral, L. G., Rizzo, A. C. L., Leite, S. G. F., & Soriano, A. U. (2005). Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: a comparison study. Chemosphere, 58(4), 515–522. doi:10.1016/j.chemosphere.2004.09.021.

    Article  CAS  Google Scholar 

  • Tyagi, M., Da Fonseca, M. M., & De Carvalho, C. C. (2010). Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation, 22, 231–241. doi:10.1007/s10532-010-9394-4.

    Article  Google Scholar 

  • Van Veen, J. A., Van Overbeek, L. S., & van Elsas, J. D. (1997). Fate and activity of microorganisms introduced into soil. Microbiology and Molecular Biology Reviews, 61(2), 121–135.

    Google Scholar 

  • Venkata Mohan, S., Purushotham Reddy, B., & Sarma, P. N. (2009). Ex situ slurry phase bioremediation of chrysene contaminated soil with the function of metabolic function: process evaluation by data enveloping analysis (DEA) and Taguchi design of experimental methodology (DOE). Bioresource Technology, 100(1), 164–172. doi:10.1016/j.biortech.2008.06.020.

    Article  CAS  Google Scholar 

  • Wang, M., Wang, C., Hu, X., Zhang, H., He, S., & Lv, S. (2015). Distributions and sources of petroleum, aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in surface sediments from Bohai Bay and its adjacent river, China. Marine Pollution Bulletin, 90(1–2), 88–94. doi:10.1016/j.marpolbul.2014.11.017.

    Article  CAS  Google Scholar 

  • Wu, R. R., Dang, Z., Yi, X. Y., Yang, C., Lu, G. N., Guo, C. L., et al. (2011). The effects of nutrient amendment on biodegradation and cytochrome P450 activity of an n-alkane degrading strain of Burkholderia sp. GS3C. Journal of Hazardous Materials, 186, 978–983. doi:10.1016/j.jhazmat.2010.11.095.

    Article  CAS  Google Scholar 

  • Xu, Y. H., & Lu, M. (2010). Bioremediation of crude oil-contaminated soil: comparison of different biostimulation and bioaugmentation treatments. Journal of Hazardous Materials, 183, 395–401. doi:10.1016/j.jhazmat.2010.07.038.

    Article  CAS  Google Scholar 

  • Xu, H. X., Wu, H. Y., Qiu, Y. P., Shi, X. Q., He, G. H., Zhang, J. F., et al. (2010). Degradation of fluoranthene by a newly isolated strain of Herbaspirillum chlorophenolicum from activated sludge. Biodegradation, 22(2), 335–345. doi:10.1007/s10532-010-9403-7.

    Article  Google Scholar 

  • Xu, N., Bao, M., Sun, P., & Li, Y. (2013). Study on bioadsorption and biodegradation of petroleum hydrocarbons by a microbial consortium. Bioresource Technology, 149, 22–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by grants from the Guangdong Provincial Science and Technology Project (2014A020217002), the National Natural Science Foundation of China (No. 41573091), and the National High Technology Research and Development Program of China (2012AA101403).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuling Guo or Zhi Dang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Guo, C., Lu, G. et al. Bioremediation of Petroleum-Contaminated Acid Soil by a Constructed Bacterial Consortium Immobilized on Sawdust: Influences of Multiple Factors. Water Air Soil Pollut 227, 444 (2016). https://doi.org/10.1007/s11270-016-3117-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3117-3

Keywords

Navigation