Mercury and Arsenic in Stream Sediments and Surface Waters of the Orcia River Basin, Southern Tuscany, Italy

Abstract

The Orcia River basin lies north of the Mt. Amiata mining district and may receive potentially harmful/toxic elements such as mercury (Hg) and arsenic (As) therefrom. The Orcia River eventually flows to the Ombrone River, which in turn flows to the Tyrrhenian Sea. The analysis of stream sediments collected in the Orcia River and its main tributaries, as well as in the Ombrone River, indicates moderate concentrations of both Hg and As (median values, Hg 118 μg/kg and As 5.25 mg/kg), rarely exceeding Italian environmental quality standards. Exceptionally high values for both elements are observed only in close proximity to the former Pietrineri Hg mine (Hg 195 mg/kg and As 35 mg/kg). Travertine and unconsolidated deposits associated with thermal springs in the area generally exhibit low Hg concentrations (4–320 μg/kg), with a significant exception of 23 mg/kg at Bagni San Filippo. Arsenic concentration in the same deposits is more variable with a peak level of 358 mg/kg. Surface waters collected at the same sites as stream sediments show Hg and As concentrations below the Italian mandatory limits for drinking waters (1 μg/L for Hg and 10 μg/L for As). Likewise, in thermal springs, Hg concentrations are low, whereas As concentrations are relatively high (up to 23.4 μg/L), which is in agreement with previous studies. At present, the input of toxic elements from the mining district into the Orcia and Ombrone watersheds is lower than inputs documented in the Paglia and Tiber catchments south of Mt. Amiata and does not pose an immediate environmental threat. However, the possible remobilization of Hg-contaminated sediments during flash flood events cannot be dismissed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. AA. VV. (2010). Indagine geochimica ed isotopica delle sorgenti termo- ed oligominerali dell’area amiatina, Progetto MAC-GEO Regione Toscana, Accordo di Programma Quadro Ricerca e trasferimento tecnologico per il sistema produttivo, III Accordo integrativo, DST—Dipartimento di Scienze della Terra—Università di Firenze, Gruppo di Geochimica.

  2. AA. VV. (2008). Studio geostrutturale, idrogeologico e geochimico ambientale dell’area amiatina, Università di Siena Relazione tecnico-scientifica, 380 pp.

  3. AA.VV. (1971). The mineral deposits of southern Tuscany. Rend. Soc. Ital. Mineral. Petrol., 27, Spec. Issue, 357–544.

  4. Amos, H. M., Jacob, D. J., Kocman, D., Horowitz, H. M., Zhang, Y., Dutkiewicz, S., Horvat, M., Corbitt, E. S., Krabbenhof, D. P., & Sunderland, E. M. (2014). Global biogeochemical implications of mercury discharges from rivers and sediment burial. Environmental Science and Technology, 48, 9514–9522.

    CAS  Article  Google Scholar 

  5. Angelone, M., Cremisini, C., Piscopo, V., Proposito, M., & Spaziani, F. (2009). Influence of hydrostratigraphy and structural setting on the arsenic occurrence in groundwater of the Cimino-Vico volcanic area (Central Italy). Hydrogeology Journal, 17, 901–914.

    CAS  Article  Google Scholar 

  6. Bacci, E., Gaggi, C., Lanzillotti, E., & Ferrozzi, S. (1998). Studio per l’individuazione dei residui di mercurio in forme mobili e della presenza di altri elementi in tracce di interesse ai fini della predisposizione di un progetto di bonifica dell’area di pertinenza della ex miniera di mercurio di Abbadia San Salvatore (SI). ENI SpA—Divisione AGIP, Mining Italiana SpA. Roma

  7. Bacci, E., Gaggi, C., Lanzillotti, E., Ferrozzi, S., & Valli, L. (2000). Geothermal power plants at Mt. Amiata(Tuscany ± Italy): mercury and hydrogen sulphide deposition revealed by vegetation. Chemosphere, 40, 907–911.

    CAS  Article  Google Scholar 

  8. Bardelli, F., Benvenuti, M., Costagliola, P., Di Benedetto, F., Lattanzi, P., Meneghini, C., et al. (2011). Arsenic uptake by natural calcite: an XAS study. Geochimica et Cosmochimica Acta, 75(1), 3011–3023.

    CAS  Article  Google Scholar 

  9. Benvegnù, F., & Brondi, A. (1965). Messa a punto di metodi di prospezione mineralogica. Aureola di dispersione clastica del cinabro nel bacino dell’Ombrone (Rosseto). Rendiconti Società Mineralogica Italiana, 21, 3–23.

    Google Scholar 

  10. Berzas Nevado, J. J., Garcia Bermejo, L. F., & Rodriguez Martin–Doimeadios, R. C. (2003). Distribution of mercury in the aquatic environment at Almadén, Spain. Environmental Pollution, 122, 261–271.

    CAS  Article  Google Scholar 

  11. Bhumbla, D. K., & Keefler, R. F. (1994). Arsenic mobilization and bioavailability in soils. In J. O. Nriagu (Ed.), Arsenic in the environment, part I, cycling and characterization (pp. 51–82). New York: Wiley.

    Google Scholar 

  12. Brogi, A., Fabbrini, L., & Liotta, D. (2011). Sb–Hg ore deposit distribution controlled by brittle structures: the case of the Selvena mining district (Monte Amiata, Tuscany, Italy). Ore Geology Reviews, 41, 35–48.

    Article  Google Scholar 

  13. Cinnirella, S., Graziano, M., Pon, J., Murciano, C., Albaigés, J., & Pirrone, N. (2013). Integrated assessment of chemical pollution in the Mediterranean Sea: driver-pressures-state-welfare analysis. Ocean and Coastal Management, 80, 36–45.

    Article  Google Scholar 

  14. Cossa, D., & Coquery, M. (2005). The Mediterranean mercury anomaly, a geochemical or a biological issue. In A. Saliot (Ed.), Mediterranean Sea, The Handbook of Environmental Chemistry, 5, Part K (pp. 177–208). Berlin: Springer.

    Google Scholar 

  15. Costagliola, P., Bardelli, F., Benvenuti, M., Di Benedetto, F., Lattanzi, P., Romanelli, M., et al. (2013). Arsenic-bearing calcite in natural travertines: evidence from sequential extraction, μXAS, and μXRF. Environmental Science and Technology, 47, 6231–6238.

    CAS  Google Scholar 

  16. Costagliola, P., Benvenuti, M., Benvenuti, M. G., Di Benedetto, F., & Lattanzi, P. (2010). Quaternary sediment geochemistry as a clue for tracing the source of toxic elements: a case study of arsenic in the Pecora Valley (southern Tuscany, Italy). Chemical Geology, 270, 80–89.

    CAS  Article  Google Scholar 

  17. Costagliola, P., Benvenuti, M., Chiarantini, L., Bianchi, S., Di Benedetto, F., Paolieri, M., & Rossato, L. (2008). Impact of ancient metal smelting on arsenic pollution in the Pecora River Valley, Southern Tuscany, Italy. Applied Geochemistry, 23, 1241–1259.

    CAS  Article  Google Scholar 

  18. Costagliola, P., Rimondi, V., Benvenuti, M., Chiarantini, L., Di Benedetto, F., Gasparon, M., et al. (2007). Arsenic uptake by natural calcites: preliminary results from sequential extraction of travertines (Southern Tuscany, Italy). In F. Frau & R. Cidu (Eds.), Proceedings of IMWA Symposium 2007, Cagliari/Sardinia Italy (pp. 415–418). Cagliari: Mako Edizioni.

    Google Scholar 

  19. Di Benedetto, F., Costagliola, P., Benvenuti, M., Lattanzi, P., Romanelli, M., & Tanelli, G. (2006). Arsenic incorporation in natural calcite lattice: evidence from electron spin echo spectroscopy. Earth and Planetary Science Letters, 246(3–4), 458–465.

    Article  Google Scholar 

  20. Dumas, C., Ludwig, W., Aubert, D., Eyrolle, F., Raimbault, P., Gueneugues, A., & Sotin, C. (2015). Riverine transfer of anthropogenic and natural trace metals to the Gulf of Lions (NW Mediterranean Sea). Applied Geochemistry, 58, 14–25.

    CAS  Article  Google Scholar 

  21. EPA (United States Environmental Protection Agency). (1996). Method 1669, Sampling Ambient Water for Trace Metals at EPA Water Quality Criteria Levels. Washington, D.C.: U.S. Environmental Protection Agency.

    Google Scholar 

  22. EPA (United States Environmental Protection Agency). (2009). National recommended water quality criteria. Washington, D.C.: U.S. Environmental Protection Agency.

    Google Scholar 

  23. Ferrari, L., Conticelli, S., Burlamacchi, L., & Manetti, P. (1996). Volcanologic evolution of the Monte Amiata, Southern Tuscany: new geological and petrochemical data. Acta Vulcanologica, 8, 41–56.

    Google Scholar 

  24. Gray, J. E., Hines, M. E., Higueras, P. L., Adatto, I., & Lasorsa, B. K. (2004). Mercury speciation and microbial transformations in mine wastes, stream sediments, and surface waters at the Almadén mining district, Spain. Environmental Science and Technology, 38, 4285–4292.

    CAS  Article  Google Scholar 

  25. Gray, J. E., Rimondi, V., Costagliola, P., Vaselli, O., & Lattanzi, P. (2014). Long-distance transport of Hg, Sb, and As from a mined area, conversion of Hg to methyl-Hg, and uptake of Hg by fish on the Tiber River basin, west-central Italy. Environmental Geochemistry and Health, 36, 145–157.

    CAS  Article  Google Scholar 

  26. IME (2006). Rules on environmental subject. Legislative Decree 152/06 Gazzetta Ufficiale no. 88. Italian Ministry of the Environment.

  27. Klemm, D. D., & Neumann, N. (1984). Ore-controlling factors in the Hg-Sb province of southern Tuscany, Italy. In A. WauschKuhn et al. (Eds.), Syngenesis and epigenesis in the formation of mineral deposits (pp. 482–503). Berlin: Springer.

    Google Scholar 

  28. Kotnik, J., Horvat, M., Ogrinc, N., Fajon, V., Žagar, D., Cossa, D., Sprovieri, F., & Pirrone, N. (2015). Mercury speciation in the Adriatic Sea. Marine Pollution Bulletin, 96, 136–148.

    CAS  Article  Google Scholar 

  29. MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20–31.

    CAS  Article  Google Scholar 

  30. Macklin, M. G., Benito, G., Gregory, K. J., Johnstone, E., Lewin, J., Michczyńska, D. J., et al. (2006). Past hydrological events reflected in the Holocene fluvial record of Europe. Catena, 66, 145–154.

    Article  Google Scholar 

  31. Maest, S., Pasilis, S. P., Miller, L. G., & Nordstrom, D. K. (1999). Redox geochemistry of arsenic and iron in Mono Lake, California, USA. In Y. K. Kharaka & A. S. Maest (Eds.), Proceedings of the 7th International Symposium Water–Rock Interactions (pp. 507–551). Rotterdam: A.A. Balkema.

    Google Scholar 

  32. Mantelli, F. (2002). Presenza di arsenico nelle acque distribuite al consumo umano in Toscana, Agenzia Regionale per la Protezione Ambientale della Toscana (ARPAT)—Dipartimento provinciale di Firenze.

    Google Scholar 

  33. Marroni, M., Moratti, G., Costantini, A., Conticelli, S., Benvenuti, M. G., Pandolfi, L., et al. (2015). Geology of the Monte Amiata region, Southern Tuscany, Central Italy. Italian Journal of Geosciences, 134(2), 171–199.

    Article  Google Scholar 

  34. Mason, R. P., Fitzgerald, W. F., & Morel, F. M. M. (1994). The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochimica et Cosmochimica Acta, 58, 3191–3198.

    CAS  Article  Google Scholar 

  35. Meli, R. (2002). Giacimenti da non dimenticare: Pietrineri (Val d’Orcia, Siena). Rivista Mineralogica Italiana, 26(2), 70–73.

    Google Scholar 

  36. Morel, M. M. F., Kraepiel, A. M. L., & Amyot, M. (1998). The chemical cycle and bioaccumulation of mercury. Annual Review of Ecology and Systematics, 29, 543–566.

    Article  Google Scholar 

  37. Morteani, G., Ruggieri, G., Möller, P., & Preinfalk, C. (2011). Geothermal mineralized scales in the pipe system of the geothermal Piancastagnaio power plant (Mt. Amiata geothermal area): a key to understand the stibnite, cinnabarite and gold mineralization of Tuscany (central Italy). Mineralium Deposita, 46, 197–210.

    CAS  Article  Google Scholar 

  38. Nimick, D. A., Moore, J. N., Dalby, C. E., & Savka, M. W. (1998). The fate of geothermal arsenic in the Madison and Missouri Rivers, Montana and Wyoming. Water Resources Research, 34, 3051–3067.

    CAS  Article  Google Scholar 

  39. Pandeli, E., Bertini, G., Castellucci, P., Morelli, M., & Monechi, S. (2005). The sub-Ligurian and Ligurian units of the Mt. Amiata geothermal region (south-eastern Tuscany): new stratigraphic and tectonic data and insights into their relationships with the Tuscan Nappe. Bollettino della Societa Geologica Italiana, 3, 55–71.

    Google Scholar 

  40. Pattelli, G., Rimondi, V., Benvenuti, M., Chiarantini, L., Colica, A., Costagliola, P., et al. (2014). Effects of the November 2012 flood event on the mobilization of Hg from the Mount Amiata mining district to the sediments of the Paglia River Basin. Minerals, 4, 241–256.

    CAS  Article  Google Scholar 

  41. Protano, G., Riccobono, F., & Sabatini, G. (1998). La cartografia geochimica della Toscana Meridionale. Criteri di realizzazione e rilevanza ambientale attraverso esempi di Hg, As, Sb, Pb e Cd. Memorie Descrittive Carta Geologica Italiana, 55, 109–140.

    Google Scholar 

  42. Rajar, R., Cetina, M., Horvat, M., & Zagar, D. (2007). Mass balance of mercury in the Mediterranean Sea. Marine Chemistry, 107, 89–102.

    CAS  Article  Google Scholar 

  43. RIMIN (1985a). Campagna Toscana 2 bis; dati relativi alla carta di campionamento App.4 Tav. 1c/119. Italian Ministry of Industry, Trades and Craftwork (MICA)—ENI (Hydrocarbon Italian National Agency) Convention.

  44. RIMIN (1985b). Toscana 2-2bis. Final Report, Italian Ministry of Industry, Trades and Craftwork (MICA)—ENI (Hydrocarbon Italian National Agency) Convention.

  45. RIMIN (1990). Campagna Toscana meridionale 3. Italian Ministry of Industry, Trades and Craftwork (MICA)—ENI (Hydrocarbon Italian National Agency) Convention.

  46. Rimondi, V., Bardelli, F., Benvenuti, M., Costagliola, P., Gray, J. E., & Lattanzi, P. (2014a). Mercury speciation in the Mt. Amiata mining district (Italy): interplay between urban activities and mercury contamination. Chemical Geology, 380, 110–118.

    CAS  Article  Google Scholar 

  47. Rimondi, V., Chiarantini, L., Lattanzi, P., Benvenuti, M., Beutel, M., Colica, A., et al. (2015). Metallogeny, exploitation and environmental impact of the Mt. Amiata mercury ore district (Southern Tuscany, Italy). Italian Journal of Geosciences, 134, 323–336.

    Article  Google Scholar 

  48. Rimondi, V., Costagliola, P., Gray, J. E., Lattanzi, P., Nannucci, M., Paolieri, M., & Salvadori, A. (2014b). Mass loads of dissolved and particulate mercury and other trace elements in the Mt. Amiata mining district, Southern Tuscany (Italy). Environmental Science and Pollution Research, 21, 5575–5585.

    CAS  Article  Google Scholar 

  49. Rimondi, V., Gray, J. E., Costagliola, P., Vaselli, O., & Lattanzi, P. (2012). Concentration, distribution, and translocation of mercury and methylmercury in mine-waste, sediment, soil, water, and fish collected near the Abbadia San Salvatore mercury mine, Monte Amiata district, Italy. Science of the Total Environment, 414, 318–327.

    CAS  Article  Google Scholar 

  50. Rudnick, S., & Gao, S. (2003). Composition of the continental crust. In H. D. Holland & K. K. Turekian (Eds.), The crust, treatise on geochemistry (Vol. 3, pp. 1–64). Oxford: Elsevier.

    Google Scholar 

  51. Sabatelli, F., Mannari, M., & Parri, R. (2009). Hydrogen sulfide and mercury abatement: development and successful operation of AMIS technology. Geochemical Research Council Transactions, 33, 343–347.

    CAS  Google Scholar 

  52. Scanu, S., Piazzolla, D., Frattarelli, F. M., Mancini, E., Tiralongo, F., Brundo, M. V., et al. (2016). Mercury Enrichment in Sediments of the Coastal Area of Northern Latium, Italy. Bulletin of Environmental Contamination and Toxicology, 96(5), 630–637.

  53. Singer, M. B., Aalto, R., James, L. A., Kilham, N. E., Higson, J. L., & Ghoshal, S. (2013). Enduring legacy of a toxic fan via episodic redistribution of California gold mining. Proceedings of the National Academy of Sciences (PNAS), 110, 18436–18441.

    CAS  Article  Google Scholar 

  54. Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    CAS  Article  Google Scholar 

  55. Springborn, M., Singer, M. B., & Dunne, T. (2011). Sediment-adsorbed total mercury flux through Yolo Bypass, the primary floodway and wetland in the Sacramento Valley, California. Science of the Total Environment, 412–413, 203–213.

    Article  Google Scholar 

  56. Squadrone, S., Benedetto, A., Brizio, P., Prearo, M., & Abete, M. C. (2015). Mercury and selenium in European catfish (Silurus glanis) from Northern Italian Rivers: Can molar ratio be a predictive factor for mercury toxicity in a top predator? Chemosphere, 119, 24–30.

    CAS  Article  Google Scholar 

  57. Strappa, O. (1977). Storia delle miniere di mercurio del M. Amiata. L’industria mineraria, 28, 252–259.

    Google Scholar 

  58. Širca, A., Horvat, M., Rajar, R., Covelli, S., Zagar, D., & Faganeli, J. (1999). Estimation of mercury mass balance in the Gulf of Trieste. Acta Adriatica, 40, 75–85.

    Google Scholar 

  59. Tamasi, G., & Cini, R. (2004). Heavy metals in drinking waters from Mount Amiata (Tuscany, Italy). Possible risks from arsenic for public health in the Province of Siena. Science of the Total Environment, 327, 41–51.

    CAS  Article  Google Scholar 

  60. USEPA (1982). An exposure and risk assessment for arsenic. U.S. Environmental Protection Agency. Office of Water, Regulations and Standards (WH-553). Washington DC 20460 (EPA 440/4-85-005).

  61. Vaselli, O., Higueras, P., Nisi, B., Esbrí, J. M., Cabassi, J., Martínez-Coronado, A., Tassi, F., & Rappuoli, D. (2013). Distribution of Gaseous Hg in the mercury mining district of Mt. Amiata (Central Italy): a geochemical survey prior the reclamation project. Environmental Research, 125, 179–187.

    CAS  Article  Google Scholar 

  62. White, D. C., & Kirchner, J. W. (2000). Assessing water quality impacts and clean up effectiveness in streams dominated by episodic mercury discharges. Science of the Total Environment, 260, 1–9.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Chiarantini.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chiarantini, L., Benvenuti, M., Beutel, M. et al. Mercury and Arsenic in Stream Sediments and Surface Waters of the Orcia River Basin, Southern Tuscany, Italy. Water Air Soil Pollut 227, 408 (2016). https://doi.org/10.1007/s11270-016-3110-x

Download citation

Keywords

  • Mercury
  • Arsenic
  • Stream sediments
  • Surface waters
  • Orcia River
  • Tuscany