Water, Air, & Soil Pollution

, 227:404 | Cite as

Consequences of Different Types of Littoral Zone Light Pollution on the Parental Care Behaviour of a Freshwater Teleost Fish

  • Jordann G. Foster
  • Dirk A. Algera
  • Jacob W. Brownscombe
  • Aaron J. Zolderdo
  • Steven J. CookeEmail author


Ecological light pollution occurs when artificial lights disrupt the natural regimes of individual organisms or their ecosystems. Increasing development of shoreline habitats leads to increased light pollution (e.g., from cottages, docks, automobile traffic), which could impact the ecology of littoral zones of lakes and rivers. Smallmouth bass (Micropterus dolomieu) engage in sole paternal care, guarding their nest continually, day and night, to protect their developing offspring. Any alterations to their behaviour—either directly because of the response to light or indirectly due to changes in nest predator activity and associated response of the bass—could lead to increased energetic demands for fish that have a fixed energy budget and ultimately reduce reproductive success. To examine this issue, tri-axial accelerometer biologgers were externally attached to nesting smallmouth bass during the egg stage to determine whether light pollution (i.e., dock lights with low levels of continuous light and spotlights with high intensity irregular light simulating automobile traffic) altered behaviour of nesting males relative to control fish. Our study revealed that both types of light pollution increased overall bass activity level compared with the control group. The intermittent light treatment group had the highest activity and exhibited large fluctuations between night and day activity levels. Fish in the continual light treatment group displayed statistically higher activity than the control fish but showed limited fluctuations between day and night activity levels. Our results suggest that continuous or intermittent light sources, common in shoreline habitats that have been developed, have the potential to alter the behaviour and thus energy use of nest-guarding fish. This study contributes to the growing body of literature on the ecological consequences of light pollution in aquatic ecosystems.


Behavioural alteration Smallmouth bass Light pollution 



We thank J. Rudd, L. Elmer, J. Logan, E. Cooke, S. Clarke, W. Twardek, T. Prystay, J. Brooks, C. Reid, S. Jain-Schlaepfer, and C. Elvidge for assistance in tagging fish in the field. We gratefully acknowledge F. Phelan and all staff at the Queens’s University Biological Station for supplying facilities and support for this research and the Ministry of Natural Resources and Forestry of Ontario for the necessary fish collection permit. This research was supported by the Natural Sciences and Engineering Research Council of Canada, the Canada Research Chairs Program and Carleton University.


  1. Ali, M. A. (1959). The ocular structure, retinomotor and photo-behavioral responses of juvenile pacific salmon. Canadian Journal of Zoology, 37, 965–996.CrossRefGoogle Scholar
  2. Becker, A., Whitfield, A. K., Cowley, P. D., Järnegren, J., & Næsje, T. F. (2013). Does boat traffic cause displacement of fish in estuaries? Marine Pollution Bulletin 75, 168–173.Google Scholar
  3. Brown, T.G., Runciman, B., Pollard, S., Grant, A.D.A, Bradford, M.J. (2009). Biological Synopsis of Smallmouth Bass (Micropterus dolomieu). Canadian Manuscript Report of Fisheries and Aquatic Sciences 2887, Fisheries and Oceans Canada Science Branch, Nanaimo, B.C., Canada.Google Scholar
  4. Brown, D. D., Kays, R., Wikelski, M., Wilson, R. P., & Klimley, A. P. (2013). Observing the unwatchable through acceleration logging of animal behavior. Animal Biotelemetry, 20, 2–16. doi: 10.1186/2050-3385-1-20.
  5. Brown, R. S., Cooke, S. J., Anderson, W. G., & McKinley, R. S. (1999). Evidence to challenge the “2% Rule” for biotelemetry. N. Am. J. Fish. Manage., 19, 867–871. doi: 10.1577/1548-8675(1999)019<0867:ETCTRF>2.0.CO;2.
  6. Brownscombe, J. W., Gutowsky, L. F. G., Danylchuk, A. J., & Cooke, S. J. (2014). Foraging behaviour and activity of a marine benthivorous fish estimated using tri-axial accelerometer biologgers. Marine Ecology Progress Series, 505, 241–251. doi: 10.3354/meps10786.
  7. Brownscombe, J. W., Thiem, J. D., Hatry, C., Cull, F., Haak, C. R., Danylchuk, A. J., & Cooke, S. J. (2013). Recovery bags reduce post-release impairments in locomotory activity and behavior of bonefish (Albula spp.) following exposure to angling-related stressors. Journal of Experimental Marine Biology and Ecology, 440, 207–215. doi: 10.1016/j.jembe.2012.12.004.
  8. Brüning, A., Hölker, F., Franke, S., Preuer, T., & Kloas, W. (2015). Spotlight on fish: Light pollution affects circadian rhythms of European perch but does not cause stress. Science of the Total Environment, 511, 516–522. doi: 10.1016/j.scitotenv.2014.12.094.
  9. Coleman, R. M., Gross, M. R., & Sargent, R. C. (1985). Parental investment decision rules: a test in bluegill sunfish. Behavioral Ecology and Sociobiology, 18, 59–66. Scholar
  10. Colgan, P. W., & Brown, J. A. (1988). Dynamics of nest defense by male centrarchid fish. Behavioural Processes, 17, 17–26.CrossRefGoogle Scholar
  11. Contor, C. R., & Griffith, J. S. (1995). Nocturnal emergence of juvenile rainbow trout from winter concealment relative to light intensity. Hydrobiologia, 299, 179–183.CrossRefGoogle Scholar
  12. Cooke, S. J. (2003). Externally attached radio transmitters do not affect the parental care behaviour of rock bass. Journal of Fish Biology, 62, 965–970.CrossRefGoogle Scholar
  13. Cooke, S. J., Philipp, D. P., Wahl, D. H., & Weatherhead, P. J. (2006). Energetics of parental care in six syntopic centrarchid fishes. Oecologia, 148, 235–249. doi: 10.1007/s00442-006-0375-6.
  14. Cooke, S. J., Philipp, D. P., & Weatherhead, P. J. (2002). Parental care patterns and energetics of smallmouth bass (Micropterus dolomieu) and largemouth bass (Micropterus salmoides) monitored with activity transmitters. Canadian Journal of Zoology, 80, 756–770. doi: 10.1139/Z02-048.
  15. Cooke, S. J., Schreer, J. F., Philipp, D. P., & Weatherhead, P. J. (2003). Nesting activity, parental care behavior, and reproductive success of smallmouth bass, Micropterus dolomieu, in an unstable thermal environment. Journal of Thermal Biology, 28, 445–456. doi: 10.1016/S0306-4565(03)00038-X.
  16. Cooke, S.J., Brownscombe, J.W., Raby, G.D., Broell, F., Hinch, S.G., Clark, T.D., Semmens, J.M., In Press. Remote bioenergetics measurements in wild fish: opportunities and challenges. Comp. Biochem. Physiol. A. 00, 000-000.Google Scholar
  17. Dey, C. J., O’Connor, C. M., Gilmour, K. M., Van Der Kraak, G., & Cooke, S. J. (2010). Behavioral and physiological responses of a wild teleost fish to cortisol and androgen manipulation during parental care. Hormones and Behavior, 58, 599–605. doi: 10.1016/j.yhbeh.2010.06.016.
  18. Emery, A. R. (1973). Preliminary comparisons of day and night habits of freshwater fish in Ontario lakes. Journal of the Fisheries Research Board of Canada, 30, 761–774.CrossRefGoogle Scholar
  19. Erickson, W.P., Johnson, G.D., Young, D.P. (2005). A Summary and Comparison of Bird Mortality from Anthropogenic Causes with an Emphasis on Collisions. USDA Forest Service Gen. Tech. Rep PSW-GTR-191, 1029-1042.Google Scholar
  20. Georgiadis, M., Mavraki, N., Koutsikopoulos, C., & Tzanatos, E. (2014). Spatio-temporal dynamics and management implications of the nightly appearance of Boops boops (Acanthopterygii, Perciformes) juvenile shoals in the anthropogenically modified Mediterranean littoral zone. Hydrobiologia, 734, 81–96.CrossRefGoogle Scholar
  21. Gleiss, A. C., Wilson, R. P., & Shepard, E. L. C. (2011). Making overall dynamic body acceleration work: on the theory of acceleration as a proxy for energy expenditure. Methods in Ecology and Evolution, 2, 23–33. doi: 10.1111/j.2041-210X.2010.00057.
  22. Gravel, M. A., & Cooke, S. J. (2009). Influence of inter-lake variation in natural nest predator burden on the parental care behaviour of smallmouth bass (Micropterus dolomieu). Ethology, 115, 608–616. doi: 10.1111/j.1439-0310.2009.01641.x.
  23. Gravel, M. A., Couture, P., & Cooke, S. J. (2010). Brood predation pressure during parental care does not influence parental enzyme activities related to swimming activity in a teleost fish. Comparative Biochemistry and Physiology - Part A, 155, 100–106. doi: 10.1016/j.cbpa.2009.10.016.
  24. Gross, M. R. & Sargent, R. C. (1985). The evolution of male and female parental care in fishes. American Zoologist 25, 807–822.Google Scholar
  25. Halsey, L. G., Shepard, E. L. C., Quintana, F., Laich, A. G., Green, J. A., & Wilson, R. P. (2009). The relationship between oxygen consumption and body acceleration in a range of species. Comparative Biochemistry and Physiology - Part A, 152, 197–202. doi: 10.1016/j.cbpa.2008.09.021.
  26. Halsey, L. G., Shepard, E. L. C., & Wilson, R. P. (2011). Assessing the development and application of the accelerometry technique for estimating energy expenditure. Comparative Biochemistry and Physiology - Part A, 158, 305–314. doi: 10.1016/j.cbpa.2010.09.002.
  27. Harden Jones, F. R. (1956). The behaviour of minnows in relation to light intensity. Journal of Experimental Biology, 33, 271–281.Google Scholar
  28. Hinch, S. G., & Collins, N. C. (1991). Importance of diurnal and nocturnal nest defense in the energy budget of male Smallmouth Bass: Insights from direct video observations. Transactions of the American Fisheries Society, 120, 657–663.CrossRefGoogle Scholar
  29. Jennings, M. J., Bozek, M. A., Hatzenbeler, G. R., Emmons, E. E., & Staggs, M. S. (1999). Cumulative Effects of incremental shoreline habitat modification on fish assemblages in North Temperate lakes. North American Journal of Fisheries Management, 19, 18–27. doi: 10.1577/1548-8675(1999)019<0018:CEOISH>2.0.CO;2.
  30. Jepsen, N., Thorstad, E. B., Havn, T., & Lucas, M. C. (2015). The use of external electronic tags on fish: an evaluation of tag retention and tagging effects. Animal Biotelemetry, 3(1), 1.CrossRefGoogle Scholar
  31. Longcore, T., & Rich, C. (2004). Ecological light pollution. Frontiers in Ecology and the Environment, 4, 191–198.CrossRefGoogle Scholar
  32. Lynch, A. J., Cooke, S.J., Deines, A., Bower, S., Bunnell, D.B., Cowx, I.G., Nguyen, V.M., Nonher, J., Phouthavong, K., Riley, B., Rogers, M.W., Taylor, W.W., Woelmer, W.M., Youn S., Beard Jr., T.D., In Press. The social, economic, and ecological importance of inland fishes and fisheries. Environ. Rev. 00, 000-000.Google Scholar
  33. Nightingale, B., Longcore, T., & Simenstad, C. A. (2006). Artificial night lighting and fishes. In C. Rich & T. Longcore (Eds.), Ecological consequences of artificial night lighting (pp. 257–276). Washington, D.C., USA: Island Press.Google Scholar
  34. Perkin, E. K., Hölker, F., Richardson, J. S., Sadler, J. P., Wolter, C., & Tockner, K. (2011). The influence of artificial light on stream and riparian ecosystems: questions, challenges, and perspectives. Ecosphere, 11, 1–16.Google Scholar
  35. Philipp, D. A., Toline, C. A., Kubacki, M. F., Philipp, D. B. F., & Phelan, F. J. S. (1997). The impact of catch-and-release angling on the reproductive success of smallmouth bass and largemouth bass. North American Journal of Fisheries Management, 17, 557–567. doi: 10.1577/1548-8675(1997)017<0557:TIOCAR>2.3.CO;2.
  36. Ridgway, M. S. (1988). Developmental stage of offspring and brood defense in smallmouth bass (Micropterus dolomieui). Canadian Journal of Zoology, 66, 1722–1728.CrossRefGoogle Scholar
  37. Riley, W. D., Davidson, P. I., Maxwell, D. L., Newman, R. C., & Ives, M. J. (2015). A laboratory experiment to determine the dispersal response of Atlantic salmon (Salmo salar) fry to street light intensity. Freshwater Biology, 60, 1016–1028. doi: 10.1111/fwb.12568.
  38. Sakamoto, K. Q., Sato, K., Ishizuka, M., Watanuki, Y., Takahashi, A., Daunt, F., & Wanless, S. (2009). Can ethograms be automatically generated using body acceleration data from free-ranging birds? PLoS ONE, 4, e5379. doi: 10.1371/journal.pone.0005379.
  39. Thorpe, J. E., Morgan, R. I. G., Pretswell, D., & Higgins, P. G. (1988). Movements rhythms in juvenile Atlantic salmon, Salmo salar L. Journal of Fish Biology, 33, 931–940.CrossRefGoogle Scholar
  40. van Langevelde, F., Ettema, J. A., Donners, M., WallisDeVries, M. F., & Groenendijk, D. (2011). Effect of spectral composition of artificial light on the attraction of moths. Biological Conservation, 144, 2274–2281. doi: 10.1016/j.biocon.2011.06.004.
  41. Wagner, T., Jubar, A. K., & Bremigan, M. T. (2006). Can habitat alteration and spring angling explain largemouth bass nest success? Transactions of the American Fisheries Society, 135, 843–852. doi: 10.1577/T05-198.1.
  42. Wilson, A. D. M., Wikelski, M., Wilson, R. P., & Cooke, S. J. (2015). Utility of biological sensor tags in animal conservation. Conservation Biology, 29, 1065–1075.CrossRefGoogle Scholar
  43. Witherington, B.E., Martin, R.E. (2000). Understanding, Assessing, and Resolving light-pollution problems on sea turtle nesting beaches. FMRI Tech. Rep. TR-2. Florida Marine Research Institute, St. Petersburg, Florida, p. 73.Google Scholar
  44. Wright, S., Metcalfe, J. D., Hetherington, S., & Wilson, R. (2014). Estimating activity-specific energy expenditure in a teleost fish, using accelerometer loggers. Marine Ecology Progress Series, 496, 19–32.CrossRefGoogle Scholar
  45. Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R. New York, NY: Springer.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jordann G. Foster
    • 1
  • Dirk A. Algera
    • 1
  • Jacob W. Brownscombe
    • 1
  • Aaron J. Zolderdo
    • 1
  • Steven J. Cooke
    • 1
    Email author
  1. 1.Fish Ecology and Conservation Physiology Laboratory, Department of Biology, and Institute of Environmental ScienceCarleton UniversityOttawaCanada

Personalised recommendations