Skip to main content
Log in

Adsorption of Ethyl Acetate from Water by Nanoporous Carbon Prepared from Waste Materials

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The adsorption of ethyl acetate, a volatile organic compound, on activated carbons, synthesized from various precursors based on by-products and waste materials—polymer, biomass, coal tar pitch—was studied. The activated carbons were prepared by thermochemical treatment of the precursors, carbonization, and subsequent activation with water vapor. Surface and textural properties of obtained carbon adsorbents were characterized by low-temperature N2 adsorption, Boehm’s method, etc. The activated carbons are distinguished by relatively high surface area and developed pore structure. The adsorption investigations were performed with water solutions of ethyl acetate, and the obtained results fit well the Langmuir model, as well as the Freundlich model. All activated carbons demonstrated considerably high adsorption capacity in the range 160–450 mg/g. The obtained data indicate that the adsorption ability of activated carbon toward ethyl acetate depends on the surface area, and it increases with increasing the content of mesopores, where ethyl acetate molecules are preferably adsorbed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ania, C. O., Parra, J.-B., Arenillas, A., Rubiera, F., Bandosz, T. J., & Pis, J. J. (2007). On the mechanism of reactive adsorption of dibenzothiophene on organic waste derived carbons. Applied Surface Science, 253, 5899–5903.

    Article  CAS  Google Scholar 

  • Asasian, N., Kaghazchi, T., & Soleimani, M. (2012). Elimination of mercury by adsorption onto activated carbon prepared from the biomass material. Journal of Industrial and Engineering Chemistry, 18, 283–289.

    Article  CAS  Google Scholar 

  • Bacaoui, A., Yaacoubi, A., Dahbi, A., Bennouna, C., Phan Tan Luu, R., Maldonado-Hodar, F. J., Rivera-Utrilla, J., & Moreno-Castilla, C. (2001). Optimization of conditions for the preparation of activate carbon from olive waste cakes. Carbon, 39, 425–432.

    Article  CAS  Google Scholar 

  • Bandosz, T. (2005). Activated carbon surfaces in environmental remediation. Interface Science and Technology. New York: Elsevier.

    Google Scholar 

  • Bansal, R. C., & Goyal, M. (2005). Activated carbon adsorption. Boca Raton: Taylor & Francis.

    Book  Google Scholar 

  • Berenjian, A., Chan, N., & Malmiri, H. J. (2012). Volatile organic compounds removal methods: a review. American Journal of Biochemistry and Biotechnology, 8, 220–229.

    Article  CAS  Google Scholar 

  • Boehm, H. P. (2002). Surface oxides on carbon and their analysis: a critical assessment. Carbon, 40, 145–149.

    Article  CAS  Google Scholar 

  • Branton, P., Urita, K., & Kaneko, K. (2010). Ethyl acetate adsorption onto activated carbon. Adsorption Science and Technology, 28, 895–902.

    Article  CAS  Google Scholar 

  • Budinova, T., Krzesinska, M., Tsyntsarski, B., Zachariasz, J., & Petrova, B. (2008). Activated carbon produced from bamboo pellets for removal of arsenic(III) ions from water. Bulgarian Chemical Communications, 40, 166–172.

    CAS  Google Scholar 

  • Budinova, T., Savova, D., Tsyntsarski, B., Ania, C. O., Cabal, B., Parra, J.-B., & Petrov, N. (2009). Biomass waste-derived activated carbon for the removal of arsenic and manganese ions from aqueous solution. Applied Surface Science, 255, 4650–4657.

    Article  CAS  Google Scholar 

  • Dolidovich, A. F., Akhremkova, G. S., & Efremtsev, V. S. (1999). Novel technologies of VOC decontamination in fixed, moving and fluidized catalyst-adsorbent beds. The Canadian Journal of Chemical Engineering, 77, 342–355.

    Article  CAS  Google Scholar 

  • Ekinci, E., Ferhat Yardim, M., Razvigorova, M., Minkova, V., Goranova, M., Petrov, N., & Budinova, T. (2002). Characterization of liquid products from pyrolysis of subbituminous coals. Fuel Processing Technology, 77–78, 309–315.

    Article  Google Scholar 

  • Gales, L., Mendes, A., & Costa, C. (2000). Hysteresis in the cyclic adsorption of acetone, ethanol and ethyl acetate on activated carbon. Carbon, 38, 1083–1088.

    Article  CAS  Google Scholar 

  • Gergova, K., Petrov, P., & Eser, S. (1994). Adsorption properties and microstructure of activated carbons produced from agricultural by-products by steam pyrolysis. Carbon, 32, 693–702.

    Article  CAS  Google Scholar 

  • Husson, J., Dehaudt, J., & Guyard, L. (2015). Furfuraldehyde: from plant harvest to light harvest? Journal of Environmental Chemical Engineering, 3, 2292–2300.

    Article  CAS  Google Scholar 

  • Hwang, K. S., Choi, D. K., Gong, S. Y., & Cho, S. Y. (1997). Adsorption and thermal regeneration of methylene chloride vapor on an activated carbon bed. Chemical Engineering Science, 52, 1111–1123.

    Article  CAS  Google Scholar 

  • Khan, F. I., & Ghoshal, A. K. (2000). Removal of volatile organic compounds from polluted air. Journal of Loss Prevention in the Process Industries, 13, 527–545.

    Article  Google Scholar 

  • Khezami, L., Chetouani, A., Taouk, B., & Capart, B. (2005). Production and characterization of activated carbon from wood components in powdered: cellulose, lignin, xylan. Powder Technology, 157, 48–56.

    Article  CAS  Google Scholar 

  • Laszlo, K., Bota, A., Nagy, V., & Cabasso, I. (1999). Porous carbon from polymer waste materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 151, 311–320.

    Article  CAS  Google Scholar 

  • Manjare, S. D., & Ghoshal, A. K. (2005). Studies on dynamic adsorption behavior of ethyl acetate on molecular sieves. The Canadian Journal of Chemical Engineering, 83, 232–241.

    Article  CAS  Google Scholar 

  • Manjare, S. D., & Ghoshal, A. K. (2006a). Adsorption equilibrium studies for ethyl acetate vapour and E-Merck 13X molecular sieve system. Separation and Purification Technology, 51, 118–125.

    Article  CAS  Google Scholar 

  • Manjare, S. D., & Ghoshal, A. (2006b). Comparison of adsorption of ethyl acetate on activated carbon and molecular sieves 5A and 13X. Journal of Chemical & Engineering Data, 51, 1185–1189.

    Article  CAS  Google Scholar 

  • Minkova, V., Razvigorova, M., Bjornbom, E., Zanzi, R., Budinova, T., & Petrov, N. (2001). Effect of water vapour and biomass nature on the yield and quality of the pyrolysis products from biomass. Fuel Processing Technology, 70, 53–61.

    Article  CAS  Google Scholar 

  • Ohaa, N. V., Igbokwe, P. K., Obiora-Okafo, I. A., Ejikeme, E. M., & Government, R.M. (2013a). Adsorption of ethyl acetate from ethyl acetate-water mixture using activated clay. International Journal of Multidisciplinary Science and Engineering, 4, 10–15.

    Google Scholar 

  • Ohaa, N. V., Igbokwe, P. K., Obiora-Okafo, L. A., & Government, R.M. (2013b). Uptake of ethyl acetate from ethyl acetate-water mixture using activated carbon. International Journal of Multidisciplinary Science and Engineering, 4, 35–40.

    Google Scholar 

  • Papirer, E., Li, S., & Donnet, J.-B. (1987). Contribution to the study of basic surface groups on carbons. Carbon, 25, 243–247.

    Article  CAS  Google Scholar 

  • Park, S.-J., & Jung, W.-Y. (2002). Preparation and structural characterization of activated carbons based on polymer resin. Journal of Colloid and Interface Science, 250, 196–200.

    Article  CAS  Google Scholar 

  • Petrov, N., Budinova, T., Razvigorova, M., Parra, J.-B., & Galiatsatou, P. (2008). Conversion of olive wastes to volatiles. Biomass and Bioenergy, 32, 1303–1310.

    Article  CAS  Google Scholar 

  • Petrov, N., Budinova, T., Tsyntsarski, B., Petrova, B., Teodosiev, D., & Boncheva, N. (2010). Synthesis of nanoporous carbon from plant wastes and coal treatment pyrolysis. Bulgarian Chemical Communications, 42, 16–19.

    CAS  Google Scholar 

  • Petrova, B., Budinova, T., Tsyntsarski, B., Petrov, N., Ania, C. O., & Parra, J.-B. (2010). Phenol adsorption on activated carbons with different structure and properties. Bulgarian Chemical Communications, 42, 141–146.

    CAS  Google Scholar 

  • Petrova, B., Tsyntsarski, B., Budinova, T., Petrov, N., Ania, C. O., Parra, J. B., Mladenov, M., & Tzvetkov, P. (2011). Synthesis of nanoporous carbons from mixtures of coal tar pitch and furfural and their application as electrode materials. Fuel Processing Technology, 91, 1710–1716.

    Article  Google Scholar 

  • Ryu, Z., Rong, H., Zheng, J., Wang, M., & Zhang, B. (2002). Microstructure and chemical analysis of PAN-based activated carbon fibers prepared by different activation methods. Carbon, 40, 1144–1147.

    Article  CAS  Google Scholar 

  • Saka, C. (2012). BET, TG–DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2. Journal of Analytical and Applied Pyrolysis, 95, 21–24.

    Article  CAS  Google Scholar 

  • San Miguel, G., Fowler, G. D., & Sollars, C. J. (2003). A study of the characteristics of activated carbons produced by stream and carbon dioxide activation of waste tyre rubber. Carbon, 41, 1009–1016.

    Article  CAS  Google Scholar 

  • Savova, D., Apak, E., Ekinci, E., Ferhat Yardim, M., Petrov, N., Budinova, T., Razvigorova, M., & Minkova, V. (2001). Biomass conversion to carbon adsorbents and gas. Biomass and Bioenergy, 21, 133–142.

    Article  CAS  Google Scholar 

  • Shalaby, C. S., Ucak-Astarliog Iu, M. G., Artok, L., & Sarici, C. (2006). Preparation and characterization of activated carbons by one-step pyrolysis/activation from apricot stones. Microporous and Mesoporous Materials, 88, 126–134.

    Article  Google Scholar 

  • Tamai, H., Kouzu, M., & Yasuda, H. (2003). Preparation of highly mesoporous and high surface area activated carbons from vinylidene chloride copolymer containing yttrium acetylacetonate. Carbon, 41, 1678–1681.

    Article  CAS  Google Scholar 

  • Tan, C. S., & Liou, D. C. (1988). Desorption of ethyl acetate from activated carbon by supercritical carbon dioxide. Industrial & Engineering Chemistry Research, 27, 988–991.

    Article  CAS  Google Scholar 

  • Tsyntsarski, B., Petrova, B., Budinova, T., Petrov, N., Teodosiev, D., Sarbu, A., Sandu, T., Ferhat Yardim, M., & Sirkecioglu, A. (2014). Removal of detergents from water by adsorption on activated carbons obtained from various precursors. Desalination and Water Treatment, 52, 3445–3452.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully appreciate the funding by the Bulgarian Ministry of Education and Science under Project DFNI E 02-2 (12.12.2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Stoycheva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoycheva, I.G., Tsyntsarski, B.G., Petrova, B.N. et al. Adsorption of Ethyl Acetate from Water by Nanoporous Carbon Prepared from Waste Materials. Water Air Soil Pollut 227, 452 (2016). https://doi.org/10.1007/s11270-016-3099-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3099-1

Keywords

Navigation