Skip to main content
Log in

Understanding of the Distribution, Translocation, Bioaccumulation, and Ultrastructural Changes of Monochoria hastata Plant Exposed to Cadmium

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In the present research, the distribution and subcellular localization of cadmium in the roots, shoots, and leaves of Monochoria hastata were evaluated to understand structural and ultrastructural changes caused by the metal. Several visual toxic symptoms such as withering, chlorosis, and falling of leaves appeared in M. hastata, especially at 15 mg L−1 Cd concentration. Analysis of Cd concentration by ICP-OES showed that Cd concentrations in the root were significantly higher than those in the shoot and found to be in the following order: root > stem > leaf. Bioconcentration factor (BCF) and translocation factor (TF) were used to evaluate accumulation and transfer of metals from the root to aerial parts. TF of Cd in M. hastata was <1 in all three Cd concentrations. But it has quite considerable extent of BCF value suggesting that M. hastata is a moderate accumulator. SEM has provided a strong evidence of closing of stomata due to Cd-induced stress. The results of TEM showed the deposition of electron-dense material in vacuoles, cell wall, chloroplasts, and mitochondria. Besides, significant ultrastructural changes such as changes of the shapes of the chloroplasts, reduction of the number of cristae, high vacuolization in the cytoplasm, decrease in the intercellular spaces, shrinkage of vascular bundle, and loss of cell shape were observed in the TEM micrograph study. FTIR analysis revealed the presence of different functional groups which are responsible for binding of Cd ions in the biomass. From the above study, it is clear that M. hastata can potentially be useful for the removal of Cd from Cd-containing wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abe, T., Fukami, M., & Ogasawara, M. (2008). Cadmium accumulation in the shoots and roots of 93 weed species. Soil Science and Plant Nutrition, 54, 566–573.

    Article  CAS  Google Scholar 

  • Ager, F. J., Ynsa, M. D., Domínguez-Solís, J. R., Gotor, C., Respaldiza, M. A., & Romero, L. C. (2002). Cadmium localization and quantification in the plant Arabidopsis thaliana using micro-PIXE. Nuclear Instruments and Methods in Physics Research B, 189, 494–498.

    Article  CAS  Google Scholar 

  • Ager, F. J., Ynsa, M. D., Domínguez-Solís, J. R., López-Martín, M. C., Gotor, C., & Romero, L. C. (2003). Nuclear micro-probe analysis of Arabidopsis thaliana leaves. Nuclear Instruments and Methods in Physics Research B, 210, 401–406.

    Article  CAS  Google Scholar 

  • Ahmad, S. S., Reshi, Z. A., Shah, M. A., Rashid, I., Ara, R., & Syed, S. M. A. (2014). Phytoremediation potential of Phragmites australis in Hokersar wetland—a Ramsar site of Kashmir Himalaya. International Journal of Phytoremediation, 16, 1183–1191.

    Article  CAS  Google Scholar 

  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoxidase in Beta vulgaris. Plant Physiology, 24, 1–15.

    Article  CAS  Google Scholar 

  • Ashraf, M. A., Maah, M. J., & Yusoff, I. (2011). Heavy metals accumulation in plants growing in ex tin mining catchment. International Journal of Environmental Science and Technology, 8, 401–416.

    Article  CAS  Google Scholar 

  • Baker, A. J. M. (1981). Accumulators and excluders—strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3, 643–654.

    Article  CAS  Google Scholar 

  • Baker, A. J. M. (1987). Metal tolerance. New Phytologist, 160, 93–111.

    Google Scholar 

  • Baker, A. J. M., McGrath, S. P., Reeves, R. D., & Smith, J. A. C. (2000). Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In N. Terry & G. Banuelos (Eds.), Phytoremediation of contaminated soil and water (pp. 85–108). Boca Raton: Lewis.

    Google Scholar 

  • Barcelo, J., Poschenrieder, C., Andreu, I., & Gunse, B. (1986). Cadmium induced decrease of water stress resistance in bush bean plants (Phaseolus vulgaris L. cv. Vontendev). I. Effect of Cd on water potential, relations water content and cell wall elasticity. Plant Physiology, 125, 17–25.

    Article  CAS  Google Scholar 

  • Bartošová, A., Blinová L., & Gerulová, K. (2015). Characterisation of polysaccharides and lipids from selected green algae species by FTIR-ATR spectroscopy. Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, 23, 97–102.

  • Baruah, S., Borgohain, J., & Sarma, K. P. (2014). Phytoremediation of arsenic by Trapa natans in a hydroponic system. Water Environment Research, 11, 422–432.

    Google Scholar 

  • Baryla, A., Carrier, P., Franck, F., Coulomb, C., Sahut, C., & Havaux, M. (2001). Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. Planta, 212, 696–709.

    Article  CAS  Google Scholar 

  • Benavides, M. P., Gallego, S. M., & Tomaro, M. L. (2005). Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 17, 21–34.

    Article  CAS  Google Scholar 

  • Bert, V., Bonnin, I., Saumitou-Laprade, P., De Laguérie, P., & Petit, D. (2002). Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations. New Phytologist, 155, 47–57.

    Article  CAS  Google Scholar 

  • Bert, V., Meerts, P., Saumitou-Laprade, P., Salis, P., Gruber, W., & Verbruggen, N. (2003). Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant and Soil, 249, 9–18.

    Article  CAS  Google Scholar 

  • Bi, Y. H., Chen, W. L., Zhang, W. N., Zhou, Q., Yun, L. J., & Xing, D. (2009). Production of reactive oxygen species, impairment of photosynthetic function and dynamic changes in mitochondria are early events in cadmium-induced cell death in Arabidopsis thaliana. Biology of the Cell, 101, 629–643.

    Article  CAS  Google Scholar 

  • Bondada, B. R., & Oosterhuis, D. M. (2000). Comparative epidermal ultrastructure of cotton (Gossypium hirsutum L.) leaf, bract and capsule wall. Annals of Botany, 86, 1143–1152.

    Article  Google Scholar 

  • Cataldo, C. D., Garland, T. R., & Widung, R. E. (1983). Cadmium uptake, kinetics in intact soybean plants. Plant Physiology, 73, 844–848.

    Article  CAS  Google Scholar 

  • Chakravarty, P., Sarma, N. S., & Sarma, H. P. (2010). Biosorption of cadmium(II) from aqueous solution using heartwood powder of Areca catechu. Chemical Engineering Journal, 162, 949–955.

    Article  CAS  Google Scholar 

  • Chandra, R., Yadav, S., & Mohan, D. (2008). Effect of distillery sludge on seed germination and growth parameters of Green gram (Phaseolus mungo L.). Journal of Hazardous Materials, 152, 431–439.

    Article  CAS  Google Scholar 

  • Clemens, S. (2001). Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 212, 475–486.

    Article  CAS  Google Scholar 

  • Coates, J. (2000). Interpretation of infrared spectra, a practical approach. In R. A. Meyers (Ed.), Encyclopedia of analytical chemistry (pp. 10815–10837). Chichester: Wiley.

    Google Scholar 

  • Cuypers, A., Smeets, K., Ruytinx, J., Opdenakker, K., Keunen, E., Remans, T., Hore-mans, N., Vanhoudt, N., Van Sanden, S., Van Belleghem, F., Guisez, Y., Colpaert, J., & Vangronsveld, J. (2011). The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. Plant Physiology, 168, 309–316.

    Article  CAS  Google Scholar 

  • DalCorso, G., Farinati, S., & Furini, A. (2010). Regulatory networks of cadmium stress in plants. Plant Signaling & Behavior, 5, 663–667.

    Article  CAS  Google Scholar 

  • de la Rosa, G., Peralta-Videa, J. R., Montes, M., Parsons, J. G., & Gardea-Torresdey, J. L. (2004). Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemosphere, 55, 1159–1168.

    Article  Google Scholar 

  • Di Cagno, R., Guidi, L., De Gara, L., & Soldatini, G. F. (2001). Combined cadmium and ozone treatments affect photosynthesis and ascorbate-dependent defences in sunflower. New Phytologist, 151, 627–636.

    Article  Google Scholar 

  • Dube, B. K., Tewari, K., Chatterjee, J., & Chatterjee, C. (2003). Excess chromium alters uptake and translocation of certain nutrients in Citrullus. Chemosphere, 53, 1147–1153.

    Article  CAS  Google Scholar 

  • Ebel, M., Evangelou, M. W. H., & Schaeffer, A. (2007). Cyanide phytoremediation by water hyacinths (Eichhornia crassipes). Chemosphere, 66, 816–823.

    Article  CAS  Google Scholar 

  • Fu, X., Dou, C., Chen, Y., Chen, X., Shi, J., Yu, M., & Xu, J. (2011). Subcellular distribution and chemical forms of cadmium in Phytolacca americana L. Journal of Hazardous Materials, 186, 103–107.

    Article  CAS  Google Scholar 

  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.

    Article  CAS  Google Scholar 

  • Giri, A. K., & Patel, R. K. (2012). Phytoaccumulation potential and toxicity of arsenic ions by Eichhornia crassipes in hydroponic system. Journal of Bioremediation and Biodegradation. doi:10.4172/2155-6199.1000137.

    Google Scholar 

  • Goldsbrough, P. (2000). Metal tolerance in plants: the role of phytochelatins and metallothioneins. In N. Terry & G. Banuelos (Eds.), Phytoremediation of contaminated soil and water (pp. 221–233). Boca Raton: CRC.

    Google Scholar 

  • Goswami, R., Deb, P., Thakur, R., Sarma, K. P., & Basumallick, A. (2011). Removal of As(III) from aqueous solution using functionalized ultrafine iron oxide nanoparticles. Separation Science and Technology, 46, 1017–1022.

    Article  CAS  Google Scholar 

  • Gratão, P. L., Polle, A., Lea, P. J., & Azevedo, R. A. (2005). Making the life of heavy metal-stresses plants a little easier. Functional Plant Biology, 32, 481–494.

    Article  Google Scholar 

  • Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53, 1–11.

    Article  CAS  Google Scholar 

  • Han, F. X., Maruthi Sridhar, B. B., Monts, D. L., & Su, Y. (2004). Phytoavailability and toxicity of trivalent and hexavalent chromium to Brassica juncea L. Czern. New Phytologist, 162, 489–499.

    Article  CAS  Google Scholar 

  • Han, Y. L., Huang, S. Z., Gu, J. G., Qiu, S., & Chen, J. M. (2008). Tolerance and accumulation of lead by species of Iris L. Ecotoxicology, 17, 853–859.

    Article  CAS  Google Scholar 

  • Heyno, E., Klose, C., & Krieger-Liszkay, A. (2008). Origin of cadmium-induced reactive oxygen species production: mitochondrial electron transfer versus plasma membrane NADPH oxidase. New Phytologist, 179, 687–699.

    Article  CAS  Google Scholar 

  • Hoagland, D. R., & Snyder, W. C. (1933). Nutrition of strawberry plant under controlled conditions. Proceedings of the American Society for Horticultural Science, 30, 288–294.

    Google Scholar 

  • Hu, Y. F., Zhou, G., Na, X. F., Yang, L., Nan, W. B., Liu, X., Zhang, Y. Q., Li, J. L., & Bi, Y. R. (2013). Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings. Plant Physiology, 170, 965–975.

    Article  CAS  Google Scholar 

  • Islam, S., Ueno, Y., Sikder, T., & Kurasaki, M. (2013). Phytofiltration of arsenic and cadmium from the water environment using Micranthemum umbrosum (J.F. Gmel) S.F. Blake as a hyperaccumulator. International Journal of Phytoremediation, 15, 1010–1021.

    Article  CAS  Google Scholar 

  • Kim, I. S., Hong, Y. H., Kang, K. H., & Lee, E. J. (2008). Effects of lead on bioaccumulation patterns and the ecophysiological response in Monochoria korsakowi. Plant Biology, 51, 284–290.

    Article  CAS  Google Scholar 

  • Kovács, K., Kuzmann, E., Vértes, A., Lévai, L., Cseh, E., & Fodor, F. (2010). Effect of cadmium on iron uptake in cucumber roots: a Mössbauer spectroscopic study. Plant and Soil, 327, 49–56.

    Article  Google Scholar 

  • Küpper, H., Parameswaran, A., Leitenmaier, B., Trtilek, M., & Šetlik, I. (2007). Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytologist, 175, 655–674.

    Article  Google Scholar 

  • Liu, D., & Kottke, I. (2004). Subcellular localization of cadmium in the root cells of Allium cepa by electron energy loss spectroscopy and cytochemistry. Journal of Biosciences, 29, 329–335.

    Article  Google Scholar 

  • Lombi, E., Zhao, F. J., Dunham, S. J., & McGrath, S. P. (2000). Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytologist, 145, 11–20.

    Article  CAS  Google Scholar 

  • Lombi, E., Zhao, F. J., McGrath, S. P., Young, S. D., & Sacchi, G. A. (2001). Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytologist, 149, 53–60.

    Article  CAS  Google Scholar 

  • López-Chuken, U., Young, S., & Guzmán-Mar, J. (2010). Evaluating a ‘biotic ligand model’ applied to chloride-enhanced Cd uptake by Brassica juncea from nutrient solution at constant Cd2+ activity. Environmental Technology, 31, 307–318.

    Article  Google Scholar 

  • Lu, X., Kruatrachue, M., Pokethitiyook, P., & Homyok, K. (2004). Removal of cadmium and zinc by water hyacinth Eichhornia crassipes. Science Asia, 30, 93–103.

    Article  CAS  Google Scholar 

  • Ma, L. Q., Komar, K. M., Tu, C., Zhang, W., Cai, Y., & Kennelley, E. D. (2001). A fern that hyperaccumulates arsenic. Nature, 409, 579.

    Article  CAS  Google Scholar 

  • Maobe, M. A. G., & Nyarango, R. M. (2013). Fourier transformer infra-red spectrophotometer analysis of Warburgia ugandensis medicinal herb used for the treatment of diabetes, malaria and pneumonia in Kisii region, southwest Kenya. Global Journal of Pharmacology, 7, 61–68.

    CAS  Google Scholar 

  • McGrath, S. P. (1998). Phytoextraction for soil remediation. In R. R. Brooks (Ed.), Plants that hyperaccumulate metals. Their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining (pp. 261–288). New York: CAB International.

    Google Scholar 

  • Mishra, V. K., & Tripathi, B. D. (2008). Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresource Technology, 99, 7091–7097.

    Article  CAS  Google Scholar 

  • Mishra, V. K., Tripathi, B. D., & Kim, K. H. (2009). Removal and accumulation of mercury by aquatic macrophytes from an open cast coal mine effluent. Journal of Hazardous Materials, 172, 749–754.

    Article  CAS  Google Scholar 

  • Mourato, M. P., Moreira, I. N., Leitão, I., Pinto, F. R., Sales, J. R., & Martins, L. L. (2015). Effect of heavy metals in plants of the genus Brassica. International Journal of Molecular Sciences, 16, 17975–17998.

    Article  CAS  Google Scholar 

  • Mufarrege, M. M., Hadad, H. A., & Maine, M. A. (2010). Response of Pistia stratiotes to heavy metals (Cr, Ni, and Zn) and phosphorous. Archives of Environmental Contamination and Toxicology, 58, 53–61.

    Article  CAS  Google Scholar 

  • Ouariti, O., Boussama, N., Zarrouk, M., Cherif, A., & Ghorbal, M. H. (1997). Cadmium and copper-induced changes in tomato membrane lipids. Phytochemistry, 45, 1343–1350.

    Article  CAS  Google Scholar 

  • Parrotta, L., Guerriero, G., Sergeant, K., Cai, G., & Hausman, J. (2015). Target or barrier? The cell wall of early- and later-diverging plants vs cadmium toxicity: differences in the response mechanisms. Frontiers in Plant Science. doi:10.3389/fpls.2015.00133.

    Google Scholar 

  • Popova, L., Maslenkova, L., Yordanova, R., Krantev, A., Szalai, G., & Janda, T. (2008). Salicylic acid protects photosynthesis against cadmium toxicity in pea plants. General and Applied Plant Physiology, 34, 133–144.

    CAS  Google Scholar 

  • Prasad, M. N. V. (1995). Cadmium toxicity and tolerance in vascular plants. Environmental and Experimental Botany, 35, 525–545.

    Article  CAS  Google Scholar 

  • Rai, V., Khatoon, S., Bisht, S. S., & Mehrotra, S. (2005). Effect of cadmium on growth, ultramorphology of leaf and secondary metabolites of Phyllanthus amarus Schum. and Thonn. Chemosphere, 61, 1644–1650.

    Article  CAS  Google Scholar 

  • Ramos, I., Esteban, E., Lucena, J. J., & Gárate, A. (2002). Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd-Mn interaction. Plant Science, 162, 761–767.

    Article  CAS  Google Scholar 

  • Rascio, N., & Navari-Izzob, F. (2011). Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Science, 180, 169–181.

    Article  CAS  Google Scholar 

  • Rauser, W. E. (1999). Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochemistry and Biophysics, 31, 19–48.

    Article  CAS  Google Scholar 

  • Reeves, R. D., & Baker, A. J. M. (2000). Metal accumulating plants. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals: using plants to clean up the environment (pp. 193–229). New York: Wiley.

    Google Scholar 

  • Sandalio, L. M., Dalurzo, H. C., Gomez, M., Romero-Puertas, M. C., & Del Rio, L. A. (2001). Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 52, 2115–2126.

    CAS  Google Scholar 

  • Sawidis, T. (2008). Effect of cadmium on pollen germination and tube growth in Lilium longiflorum and Nicotiana tabacum. Protoplasma, 233, 95–106.

    Article  CAS  Google Scholar 

  • Shahid, M., Pourrut, B., Dumat, C., Nadeem, M., Aslam, M., & Pinelli, E. (2014). Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Reviews of Environmental Contamination and Toxicology, 232, 1–44.

    CAS  Google Scholar 

  • Sharma, N. C., Gardea-Torresdey, J. L., Parsons, J., & Sahi, S. V. (2004). Chemical speciation and cellular deposition of lead in Sesbania drummondii. Environmental Toxicology and Chemistry, 23, 2068–2073.

    Article  CAS  Google Scholar 

  • Sharma, S. S., Dietz, K., & Mimura, T. (2016). Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant, Cell and Environment, 39, 1112–1126.

    Article  CAS  Google Scholar 

  • Singh, S., & Sinha, S. (2004). Scanning electron microscopic studies and growth response of the plants of Helianthus annuus L. grown on tannery sludge amended soil. Environment International, 30, 389–395.

    Article  Google Scholar 

  • Singh, S., Parihar, P., Singh, R., Singh, V. P., & Prasad, S. M. (2015). Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Frontiers in Plant Science. doi:10.3389/fpls.2015.01143.

    Google Scholar 

  • Smith, B. C. (1998). Infrared spectral interpretation: a systematic approach. Boca Raton: CRC.

    Google Scholar 

  • Solti, A., Gáspár, L., Mészáros, I., Szigeti, Z., Lévai, L., & Sárvári, E. (2008). Impact of iron supply on the kinetics of recovery of photosynthesis in Cd stressed poplar (Populus glauca). Annals of Botany, 102, 771–782.

    Article  CAS  Google Scholar 

  • Sridhar, B. B. M., Diehl, S. V., Han, F. X., Monts, D. L., & Su, Y. (2005). Anatomical changes due to uptake and accumulation of Zn and Cd in Indian mustard (Brassica juncea). Environmental and Experimental Botany, 54, 131–141.

    Article  Google Scholar 

  • Sun, Y. B., Zhou, Q. X., Wang, L., & Liu, W. T. (2009). Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. Journal of Hazardous Materials, 161, 808–814.

    Article  CAS  Google Scholar 

  • Talukdar, T., & Talukdar, D. (2015). Heavy metal accumulation as phytoremediation potential of aquatic macrophyte, Monochoria vaginalis (Burm.F.) K. Presl ex Kunth. International Journal of Applied Sciences and Biotechnology, 3, 9–15.

    CAS  Google Scholar 

  • Tian, S. K., Lu, L. L., Yang, X. E., Huang, H. G., Wang, K., & Brown, P. H. (2012). Root adaptations to cadmium-induced oxidative stress contribute to Cd tolerance in the hyperaccumulator Sedum alfredii. Biologia Plantarum, 56, 344–350.

    Article  CAS  Google Scholar 

  • Uysal, Y., & Taner, F. (2010). Bioremoval of cadmium by Lemna minor in different aquatic conditions. Clean: Soil, Air, Water, 38, 370–376.

    CAS  Google Scholar 

  • van der Ent, A., Baker, A. J. M., Reeves, R. D., Pollard, A. J., & Schat, H. (2013). Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant and Soil, 362, 319–334.

    Article  Google Scholar 

  • Vassilev, A. (2004). Cadmium-induced changes in chloroplast lipids and photosystem activities in barley plants. Biologia Plantarum, 48, 153–156.

    Article  CAS  Google Scholar 

  • Vassilev, A., Tsonev, T., & Yordanov, I. (1998). Physiological response of barley plants (Hordeum vulgare) to cadmium contamination in soil during ontogenesis. Environmental Pollution, 103, 287–293.

    Article  CAS  Google Scholar 

  • Verbruggen, N., Hermans, C., & Schat, H. (2009). Mechanisms to cope with arsenic or cadmium excess in plants. Current Opinion in Plant Biology, 12, 364–372.

    Article  CAS  Google Scholar 

  • Vieira da Cunha, K. P., Araujo do Nascimento, C. W., de Mendonca Pimentel, R. M., Kim, I. S., Hong, Y. H., Kang, K. H., & Lee, E. J. (2008). Effects of lead on bioaccumulation patterns and the ecophysiological response in Monochoria korsakowi. Journal of Plant Biology, 51, 284–290.

    Article  Google Scholar 

  • Vig, K., Megharaj, M., Sethunathan, N., & Naidu, R. (2003). Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Advances in Environmental Research, 8, 121–135.

    Article  CAS  Google Scholar 

  • Vogel-Mikus, K., Simcic, J., Pelicon, P., Budnar, M., Kump, P., & Necemer, M. (2008). Comparison of essential and non-essential element distribution in leaves of the Cd/Zn hyperaccumulator Thlaspi praecox as revealed by micro-PIXE. Plant, Cell and Environment, 31, 1484–1496.

    Article  CAS  Google Scholar 

  • Wahid, A., Ghani, A., & Javed, F. (2008). Effect of cadmium on photosynthesis, nutrition and growth of mungbean. Agronomy for Sustainable Development, 28, 273–280.

    Article  CAS  Google Scholar 

  • Wang, X., Liu, Y., Zeng, G., Chai, L., Song, X., Min, Z., & Xiao, X. (2008). Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud. Environmental and Experimental Botany, 62, 389–395.

    Article  CAS  Google Scholar 

  • Wu, S. C., Cheung, K. C., Luo, Y. M., & Wong, M. H. (2006). Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environmental Pollution, 140, 124–135.

    Article  CAS  Google Scholar 

  • Xu, F., Yu, J., Tesso, T., Dowell, F., & Wang, D. (2013). Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Applied Energy, 104, 801–809.

    Article  CAS  Google Scholar 

  • Zarinkamar, F., Saderi, Z., & Soleimanpour, S. (2013). Excluder strategies in response to Pb toxicity in Matricaria chamomilla. Environment and Ecology Research, 1, 1–11.

    Google Scholar 

  • Zayed, A., Gowthaman, S., & Terry, N. (1998). Phytoaccumulation of trace elements by wetland plants: I. Duckweed. Journal of Environmental Quality, 27, 715–721.

    Article  CAS  Google Scholar 

  • Zhang, X., Zhang, S., Xu, X., Li, T., Gong, G., Jia, Y., Li, Y., & Deng, L. (2010). Tolerance and accumulation characteristics of cadmium in Amaranthus hybridus L. Journal of Hazardous Materials, 180, 303–308.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Department of Molecular Biology and Biotechnology and Department of Physics of Tezpur University for providing adequate analysis facilities during the research work. The authors are also very much thankful to North Eastern Hills University for providing the TEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kali Prasad Sarma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baruah, S., Bora, M.S., Sharma, P. et al. Understanding of the Distribution, Translocation, Bioaccumulation, and Ultrastructural Changes of Monochoria hastata Plant Exposed to Cadmium. Water Air Soil Pollut 228, 17 (2017). https://doi.org/10.1007/s11270-016-3092-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3092-8

Keywords

Navigation