Skip to main content
Log in

Energetic and Entropic Features of Cu(II) Sorption Equilibria on Fibrous Clay Minerals

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Sorption equilibria of copper(II) ions onto palygorskite and sepiolite clay minerals were studied as a function of temperature. The experimental data were fitted to the Langmuir, Freundlich, Temkin, and R-D models to obtain the isothermal constants. van’t Hoff, Gibbs, Clausius–Clapeyron, and modified Arrhenius equations were also employed to evaluate the thermodynamic parameters involved in Cu sorption. The results showed that fibrous clay minerals exhibit enhanced Cu(II) sorption capacities at higher temperatures. Enthalpy changes (ΔH°) were found to be positive, confirming that the process of Cu(II) sorption on both palygorskite and sepiolite was endothermic. Positive values were also obtained for the entropy changes (ΔS°), which suggests increased randomness at the solid-solution interface during the sorption of Cu(II) ions on both fibrous clay minerals investigated. The free energy changes (ΔG°) were negative for all the different temperatures and initial Cu(II) concentrations tested, indicating that sorption on the minerals is spontaneous and favorable. It was, therefore, concluded that sorption of Cu(II) ions on fibrous clay minerals is entropically driven. The values of isosteric heat of sorption (∆H x ) decreased with increasing sorption density, which shows that the clay surface is heterogeneous in terms of the active sites available for Cu(II) retention. The values of activation energy (E a ) and sticking probability (S *) generally lied within the ranges associated with physisorption for palygorskite and chemisorptions for sepiolite. In conclusion, the thermodynamic parameters investigated revealed the higher tendency and capacity of sepiolite, compared to palygorskite, for the feasible, spontaneous, and endothermic retention of Cu(II). However, the intensity of Cu(II) interactions with the fibrous clay minerals was found to depend to a large extent on the temperature and the initial Cu loading of the systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aluigi, A., Rombaldoni, F., Tonetti, C., & Jannoke, L. (2014). Study of methylene blue adsorption on keratin nanofibrous membranes. Journal of Hazardous Materials, 268, 156–165.

    Article  CAS  Google Scholar 

  • Atkins, P., & de Paula, J. (2002). Physical chemistry. New York: Oxford University Press.

    Google Scholar 

  • Balistrieri, L. S., & Chao, T. T. (1987). Selenium adsorption by goethite. Soil Science Society of America Journal, 51, 1145–1151.

    Article  CAS  Google Scholar 

  • Bhattacharyya, K. G., & Gupta, S. S. (2006). Kaolinite, montmorillonite, and their modified derivatives as adsorbents for removal of Cu (II) from aqueous solution. Separation and Purification Technology, 50, 388–397.

    Article  CAS  Google Scholar 

  • Bouza, P. J., Simón, M., Aguilar, J., del Valle, H., & Rostagno, M. (2007). Fibrous-clay mineral formation and soil evolution in aridisols of northeastern Patagonia, Argentina. Geoderma, 139, 38–50.

    Article  CAS  Google Scholar 

  • Cai, Y. F., & Xue, J. Y. (2008). A study of adsorption and absorption mechanisms of copper in palygorskite. Clay Minerals, 43, 195–203.

    Article  CAS  Google Scholar 

  • Cheah, S.-F., Brown, G. E., Jr., & Parks, G. A. (2000). XAFS study of Cu model compounds and Cu2+ sorption on amorphous SiO2, g-Al2O3, and anatase. American Mineralogist, 85, 118–132.

    Article  CAS  Google Scholar 

  • Chen, L., & Gao, X. (2009). Thermodynamic study of Th (IV) sorption on attapulgite. Applied Radiation and Isotopes, 67, 1–6.

    Article  CAS  Google Scholar 

  • Chowdhury, S., Mishra, R., Saha, P., & Kushwaha, P. (2011). Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination, 265, 159–168.

    Article  CAS  Google Scholar 

  • Das, B., Devi, R. R., Umlong, I. M., Borah, K., Banerjee, S., & Talukdar, A. K. (2013). Arsenic (III) adsorption on iron acetate coated activated alumina: thermodynamic, kinetics and equilibrium approach. Journal of Environmental Health Science and Engineering, 11, 42.

    Article  Google Scholar 

  • Deng, S. B., & Ting, Y. P. (2005). Fungal biomass with grafted poly(acrylic acid) for enhancement of Cu(II) and Cd(II) biosorption. Langmuir, 21, 5940–5948.

    Article  CAS  Google Scholar 

  • Doula, M., Ioannou, A., & Dimirkou, A. (2000). Thermodynamics of copper adsorption-desorption by Ca-kaolinite. Adsorption, 6, 325–335.

    Article  CAS  Google Scholar 

  • Dubinin, M. M., & Radushkevich, L. V. (1947). Equation of the characteristic curve of activated charcoal. Chemisches Zentralblatt, 1(1), 875.

    Google Scholar 

  • Fan, Q., Shao, D., Lu, Y., Wu, W., & Wang, X. (2009a). Effect of pH, ionic strength, temperature and humic substances on the sorption of Ni (II) to Na-attapulgite. Chemical Engineering Journal, 150, 188–195.

    Article  CAS  Google Scholar 

  • Fan, Q., Li, Z., Zhao, H., Jia, Z., Xu, J., & Wu, W. (2009b). Adsorption of Pb (II) on palygorskite from aqueous solution: effects of pH, ionic strength and temperature. Applied Clay Science, 45, 111–116.

    Article  CAS  Google Scholar 

  • Farpoor, M. H., & Krouse, H. R. (2008). Stable isotope geochemistry of sulfur bearing minerals and clay mineralogy of some soils and sediments in loot desert, central Iran. Geoderma, 146, 283–290.

    Article  CAS  Google Scholar 

  • Farrah, H., & Pickering, W. F. (1976). The sorption of copper species by clays I. Kaolinite. Australian Journal of Chemistry, 29, 1167–1176.

    Article  CAS  Google Scholar 

  • Galan, E. (1996). Properties and applications of palygorskite-sepiolite clays. Clay Minerals, 31, 443–453.

    Article  CAS  Google Scholar 

  • Giles, C. H., Silva, A. P. D., & Easton, I. A. (1974). A general treatment and classification of the solute adsorption isotherm part. II. Experimental interpretation. Journal of Colloid and Interface Science, 47, 766–778.

    Article  CAS  Google Scholar 

  • Grossl, P. R., Sparks, D. L., & Ainsworth, C. C. (1994). Rapid kinetics of Cu (II) adsorption/desorption on goethite. Environmental Science and Technology, 28, 1422–1429.

    Article  CAS  Google Scholar 

  • Huang, Y. H., Hsueh, C. L., Cheng, H. P., Su, L. C., & Chen, C. Y. (2007). Thermodynamics and kinetics of adsorption of Cu (II) onto waste iron oxide. Journal of Hazardous Materials, 144, 406–411.

    Article  CAS  Google Scholar 

  • Hyun, S. P., Cho, Y. H., Kim, S. J., & Hahn, P. S. (2000). Cu (II) sorption mechanism on montmorillonite: an electron paramagnetic resonance study. Journal of Colloid and Interface Science, 222, 254–261.

    Article  CAS  Google Scholar 

  • Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68, 167–182.

    Article  Google Scholar 

  • Kabata-Pendias, A. (2010). Trace elements in soils and plants. Boca Raton: CRC press.

    Google Scholar 

  • Kamari, A., & Ngah, W. W. (2010). Adsorption of Cu (II) and Cr (VI) onto treated Shorea dasyphylla bark: isotherm, kinetics, and thermodynamic studies. Separation Science and Technology, 45, 486–496.

    Article  CAS  Google Scholar 

  • Karapinar, N., & Donat, R. (2009). Adsorption behaviour of Cu2+ and Cd2+ onto natural bentonite. Desalination, 249, 123–129.

    Article  CAS  Google Scholar 

  • Karimi, A., Khademi, H., Kehl, M., & Jalalian, A. (2009). Distribution, lithology and provenance of peridesert loess deposits in northeastern Iran. Geoderma, 148, 241–250.

    Article  CAS  Google Scholar 

  • Khademi, H., & Mermut, A. R. (1998). Source of palygorskite in gypsiferous aridisols and associated sediments from central Iran. Clay Minerals, 33, 561–578.

    Article  CAS  Google Scholar 

  • Khormali, F., & Abtahi, A. (2003). Origin and distribution of clay minerals in calcareous arid and semi-arid soils of Fars province, southern Iran. Clay Minerals, 38, 511–527.

    Article  CAS  Google Scholar 

  • Komy, Z. R., Shaker, A. M., Heggy, S. E., & El-Sayed, M. E. (2014). Kinetic study for copper adsorption onto soil minerals in the absence and presence of humic acid. Chemosphere, 99, 117–124.

    Article  CAS  Google Scholar 

  • Kopsell, D. E., & Kopsell, D. A. (2007). Copper. In A. V. Barker & D. J. Pilbeam (Eds.), Handbook of plant nutrition (pp. 293–328). Boca Raton: Taylor and Francis Group.

    Google Scholar 

  • Kunze, G.W., & Dixon, J.B. (1986). Pretreatment for mineralogical analysis. In: A. Klute (Ed.), Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, 2nd edition (pp. 91–100). Madison: American Society of Agronomy, Inc. and the Soil Science Society of America, Inc.

  • Kuo, S., & Mikkelson, D. S. (1979). Zinc adsorption by two alkaline soils. Soil Science, 128, 274–279.

    Article  CAS  Google Scholar 

  • Lai, T. M., & Mortland, M. M. (1962). Self-diffusion of exchangeable cations in bentonite. In A. Swineford (Ed.), Clays and clay minerals: proceedings of the ninth national conference on clays and clay minerals (pp. 229–247). New York: Pergamon Press.

    Chapter  Google Scholar 

  • Lee, Y. J., Elzinga, E. J., & Reeder, R. J. (2005). Cu (II) adsorption at the calcite–water interface in the presence of natural organic matter: kinetic studies and molecular-scale characterization. Geochimica et Cosmochimica Acta, 69, 49–61.

    Article  CAS  Google Scholar 

  • Liu, C., & Huang, P. M. (2003). Kinetics of lead adsorption by iron oxides formed under the influence of citrate. Geochimica et Cosmochimica Acta, 67, 1045–1054.

    Article  CAS  Google Scholar 

  • McBride, M. B. (1976). Origin and position of exchange sites in kaolinite: an ESR study. Clays and Clay Minerals, 24, 88–92.

    Article  CAS  Google Scholar 

  • Morton, J. D., Semrau, J. D., & Hayes, K. F. (2001). An X-ray absorption spectroscopy study of the structure and reversibility of copper adsorbed on montmorillonite clay. Geochimica et Cosmochimica Acta, 65, 2709–2722.

    Article  CAS  Google Scholar 

  • Nevine, K. A. (2009). Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: adsorption equilibrium and kinetics. Journal of Hazardous Materials, 165, 52–62.

    Article  Google Scholar 

  • Nunes, L. M., & Airoldi, C. (1999). Some features of crystalline-titanium hydrogenphosphate, modified sodium and n-butylammonium forms and thermodynamics of ionic exchange with K+ and Ca2+. Thermochimica Acta, 328, 297–305.

    Article  CAS  Google Scholar 

  • Peacock, C. L., & Sherman, D. M. (2004). Copper (II) sorption onto goethite, hematite and lepidocrocite: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy. Geochimica et Cosmochimica Acta, 68, 2623–2637.

    Article  CAS  Google Scholar 

  • Rhoads, J. W. (1986). Cation exchange capacity. In C. A. Page (Ed.), Methods of soil analysis, part 2 (pp. 149–157). Madison: American Society of Agronomy, Inc. and the Soil Science Society of America, Inc.

    Google Scholar 

  • Sae-Ung, S., & Boonamnuayvitaya, V. (2008). Direct synthesis and characterization of amine-functionalized mesoporous silica materials and their applications as formaldehyde adsorbents. Environmental Engineering Science, 25, 1477–1486.

    Article  CAS  Google Scholar 

  • Saha, P., & Chowdhury, S. (2011). Insight into Adsorption Thermodynamics. INTECH Open Access Publisher.

  • Sánchez, E. S., Juan, N. S., Simal, S., & Rosselló, C. (1997). Calorimetric techniques applied to the determination of isosteric heat of desorption for potato. Journal of the Science of Food and Agriculture, 74, 57–63.

    Article  Google Scholar 

  • Scheckel, K. G., & Sparks, D. L. (2001). Temperature effects on nickel sorption kinetics at the mineral–water interface. Soil Science Society of America Journal, 65, 719–728.

    Article  CAS  Google Scholar 

  • SenthilKumar, P., Ramalingam, S., Sathyaselvabala, V., Kirupha, S. D., & Sivanesan, S. (2011). Removal of copper (II) ions from aqueous solution by adsorption using cashew nut shell. Desalination, 266, 63–71.

    Article  CAS  Google Scholar 

  • Sheikhhosseini, A., Shirvani, M., & Shariatmadari, H. (2013). Competitive sorption of nickel, cadmium, zinc and copper on palygorskite and sepiolite silicate clay minerals. Geoderma, 192, 249–253.

    Article  CAS  Google Scholar 

  • Shipman, J. T., Wilson, J. D., & Todd, A. W. (2003). An introduction to physical science (10th ed.). Boston: Cengage Learning.

    Google Scholar 

  • Shirvani, M., Shariatmadari, H., Kalbasi, M., Nourbakhsh, F., & Najafi, B. (2006). Sorption of cadmium on palygorskite, sepiolite and calcite: equilibria and organic ligand affected kinetics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 287, 182–190.

    Article  CAS  Google Scholar 

  • Strawn, D. G., Palmer, N. E., Furnare, L. J., Goodell, C., Amonette, J. E., & Kukkadapu, R. K. (2004). Copper sorption mechanisms on smectites. Clays and Clay Minerals, 52, 321–333.

    Article  CAS  Google Scholar 

  • Tertre, E., Berger, G., Simoni, S., Castet, S., Giffaut, E., Loubet, M., & Catalette, H. (2006). Europium retention onto clay minerals from 25 to 150 °C: experimental measurements, spectroscopic features and sorption modeling. Geochimica et Cosmochimica Acta, 70, 4563–4578.

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency. (2009). Drinking water treatability database, GACisotherm. Cincinnati: US Environmental Protection Agency.

    Google Scholar 

  • Vico, L. I. (2003). Acid–base behaviour and Cu2+ and Zn2+ complexation properties of the sepiolite/water interface. Chemical Geology, 198, 213–222.

    Article  CAS  Google Scholar 

  • Wahab, M. A., Boubakri, H., Jellali, S., & Jedidi, N. (2012). Characterization of ammonium retention processes onto Cactus leaves fibers using FTIR, EDX and SEM analysis. Journal of Hazardous Materials, 241–242, 101–109.

    Article  Google Scholar 

  • Yalcin, H., & Bozkaya, O. (2011). Sepiolite–palygorskite occurrences. In E. Galán & A. Singer (Eds.), Developments in palygorskite–sepiolite research. A New outlook on these nanomaterials. Developments in clay science, 3 (pp. 175–200). Amsterdam: Elsevier.

    Google Scholar 

  • Zhu, C. S., Wang, L. P., & Chen, W. B. (2009). Removal of Cu (II) from aqueous solution by agricultural by-product: peanut hull. Journal of Hazardous Materials, 168, 739–746.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Shirvani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravi, P., Shirvani, M., Bakhtiary, S. et al. Energetic and Entropic Features of Cu(II) Sorption Equilibria on Fibrous Clay Minerals. Water Air Soil Pollut 227, 354 (2016). https://doi.org/10.1007/s11270-016-3057-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3057-y

Keywords

Navigation