Skip to main content
Log in

Enhancement and Biological Characteristics Related to Aerobic Biodegradation of Toluene with Co-Existence of Benzene

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The interaction between different volatile organic compounds (VOCs) is a critical issue associated with bioremediation of co-contaminated sites. Contradictory results have been reported on the effects of co-existence of VOCs on biodegradation of each VOC. These contradictions are thought to be caused by inter-study variability in microbial diversity. To examine the effects of co-existing VOCs on biodegradation of each VOC, a series of biodegradation tests were carried out with a microcosm capable of degrading all three VOCs: dichloromethane (DCM), benzene, and toluene. We added different combinations of the VOCs to the microcosm while monitoring VOC concentration and microbial community diversity. Degradation of DCM and benzene was minimally influenced by co-existence of other VOCs; however, degradation of toluene was dramatically enhanced by the co-existence of benzene. Propioniferax was identified in cultures exposed to benzene alone and cultures simultaneously exposed to benzene, toluene, and DCM. Propioniferax was dominant, but prior to this study, it was not known to degrade benzene, toluene, and DCM. In the cultures exposed to only toluene, Rhodanobacter, Mycobacterium, Bradyrhizobium, and Intrasporangium increased during the biodegradation. The former three bacteria increased more rapidly when benzene and DCM were also included. These results suggest that co-existence of benzene and DCM can enhance the activity of Rhodanobacter, Mycobacterium, and Bradyrhizobium and consequently accelerate the degradation of toluene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander, M. (1994). Biodegradation and bioremediation. San Diego: Academic Press, Inc.

    Google Scholar 

  • Alfreider, A., & Vogt, C. (2007). Bacterial diversity and aerobic biodegradation potential in a BTEX-contaminated aquifer. Water, Air, and Soil Pollution, 183, 415–426.

    Article  CAS  Google Scholar 

  • Alvarez, P. J., & Vogel, T. M. (1991). Substrate interactions of benzene, toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries. Applied and Environmental Microbiology, 57, 2981–2985.

    CAS  Google Scholar 

  • Bacosa, H. P., Suto, K., & Inoue, C. (2012). Bacterial community dynamics during the preferential degradation of aromatic hydrocarbons by a microbial consortium. International Biodeterioration & Biodegradation, 74, 109–115.

    Article  CAS  Google Scholar 

  • Bagley, D. M., Lalonde, M., Kaseros, V., Stastiuk, K. E., & Sleep, B. E. (2000). Acclimation of anaerobic systems to biodegrade tetrachloroethene in the presence of carbon tetrachloride and chloroform. Water Research, 34, 171–178.

    Article  CAS  Google Scholar 

  • Bucheli-Witschel, M., Hafner, T., Rüegg, I., & Egli, T. (2009). Benzene degradation by Ralstonia pickettii PKO1 in the presence of the alternative substrate succinate. Biodegradation, 20, 419–431.

    Article  CAS  Google Scholar 

  • Burback, B. L., & Perry, J. J. (1993). Biodegradation and biotransformation of groundwater pollutant mixtures by Mycobacterium vaccae. Applied and Environmental Microbiology, 59, 1025–1029.

    CAS  Google Scholar 

  • Capel, P. D., & Larson, S. J. (1995). A chemodynamic approach for estimating losses of target organic chemicals from water during sample holding time. Chemosphere, 30, 1097–1107.

    Article  CAS  Google Scholar 

  • Cavalca, L., Dell’Amico, E., & Andreoni, V. (2004). Intrinsic bioremediability of an aromatic hydrocarbon-polluted groundwater: diversity of bacterial population and toluene monoxygenase genes. Applied Microbiology and Biotechnology, 64, 576–587.

    Article  CAS  Google Scholar 

  • Clement, B. G., Kehl, L. E., DeBord, K. L., & Kitts, C. L. (1998). Terminal restriction fragment patterns (TRFPs), a rapid, PCR-based method for the comparison of complex bacterial communities. Journal of Microbiological Methods, 31, 135–142.

    Article  CAS  Google Scholar 

  • Deeb, R. A., & Alvarez-Cohen, L. (1999). Temperature effects and substrate interactions during the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia and Rhodococcus rhodochrous. Biotechnology and Bioengineering, 62, 526–536.

    Article  CAS  Google Scholar 

  • R Development Core Team (2015). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.

  • Dunbar, J., Ticknor, L. O., & Kusuke, C. R. (2001). Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities. Applied and Environmental Microbiology, 67, 190–197.

    Article  CAS  Google Scholar 

  • Fahy, A., McGenity, T. J., Timmis, K. N., & Ball, A. S. (2006). Heterogeneous aerobic benzene-degrading communities in oxygen-depleted groundwaters. FEMS Microbiology Ecology, 58, 260–270.

    Article  CAS  Google Scholar 

  • Hayaishi, O., Katagiri, M., & Rothberg, S. (1957). Studies on oxygenases; pyrocatechase. The Journal of Biological Chemistry, 229, 905–920.

    CAS  Google Scholar 

  • International Agency for Research Center (2015). List of classifications, Volumes 1–114. IARC Monographs List of Classifications by Cancer Site. http://monographs.iarc.fr/ENG/Classification/List_of_Classifications_Vol1-114.pdf. Accessed 25 Dec 2015.

  • Jayamani, I., & Cupples, A. M. (2015). Stable isotope probing and high-throughput sequencing implicate Xanthomonadaceae and Rhodocyclaceae in ethylbenzene degradation. Environmental Engineering Science, 32, 240–249.

    Article  CAS  Google Scholar 

  • Juwarkar, A. A., Singh, S. K., & Mudhoo, A. (2010). A comprehensive overview of elements in bioremediation. Reviews in Environmental Science and Bio/Technology, 9, 215–288.

  • Krausova, V. I., Robb, F. T., & González, J. M. (2006). Biodegradation of dichloromethane in an estuarine environment. Hydrobiologia, 559, 77–83.

    Article  CAS  Google Scholar 

  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, doi:10.1093/molbev/msw054. http://www.megasoftware.net/.

  • Lane, D. J. (1991). 16S/23S rRNA sequencing. In E. Stackebrandt & M. Goodfellow (Eds.), Nucleic acid techniques in bacterial systematics (pp. 115–175). John Wiley & Sons: Chichester.

    Google Scholar 

  • Leahy, J. G., Batchelor, P. J., & Morcomb, S. M. (2003). Evolution of the soluble diiron monooxygenases. FEMS Microbiology Reviews, 27, 449–479.

    Article  CAS  Google Scholar 

  • Mackay, D., & Shiu, W. Y. (1981). A critical review of Henry’s low constants for chemicals of environmental interest. Journal of Physical and Chemical Reference Data, 10, 1175–1199.

    Article  CAS  Google Scholar 

  • Moeseneder, M. M., Arrieta, J. M., Muyzer, G., Winter, C., & Herndl, G. J. (1999). Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterioplankton communities and comparison with denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 65, 3518–3525.

    CAS  Google Scholar 

  • Muller, E. E. L., Bringel, F., & Vuilleumier, S. (2011). Dichloromethane-degrading bacteria in the genomic age. Research in Microbiology, 162, 869–876.

    Article  CAS  Google Scholar 

  • Nelson, M. J. K., Montgomery, A. O., & Pritchard, P. H. (1988). Trichloroethylene metabolism by microorganisms that degrade aromatic compounds. Applied and Environmental Microbiology, 54, 604–606.

    CAS  Google Scholar 

  • Oh, Y.-S., Shareefdeen, Z., Baltzis, B. C., & Bartha, R. (1994). Interactions between benzene, toluene, and p-xylene (BTX) during their biodegradation. Biotechnology and Bioengineering, 44, 533–538.

    Article  CAS  Google Scholar 

  • Oksanen, J., Blanchet, G. F., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, S. P., Stevens, M. H. H., & Wanger, H. (2015). Vegan: Community Ecology Package. R Package Version 2.3-0. http://CRAN.R-project.org/package=vegan

  • Osborn, A. M., Moore, E. R., & Timmis, K. N. (2000). An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environmental Microbiology, 2, 39–50.

    Article  CAS  Google Scholar 

  • Priya, V. S., & Philip, L. (2013). Biodegradation of dichloromethane along with other VOCs from pharmaceutical wastewater. Applied Biochemistry and Biotechnology, 169, 1197–1218.

    Article  CAS  Google Scholar 

  • Pruesse, E., Peplies, J., & Glöckner, F. O. (2012). SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics, 28, 1823–1829. http://www.arb-silva.de/.

    Article  CAS  Google Scholar 

  • Reardon, K. F., Mosteller, D. C., & Bull Rogers, J. D. (2000). Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F1. Biotechnology and Bioengineering, 69, 385–400.

    Article  CAS  Google Scholar 

  • Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., & Weber, C. F. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 7537–7541. http://www.mothur.org/.

    Article  CAS  Google Scholar 

  • Schroeder, E. D., Eweis, J. B., Chang, D. P. Y., & Veir, J. K. (2000). Biodegradation of recalcitrant components of organic mixtures. Water, Air, and Soil Pollution, 123, 133–146.

    Article  CAS  Google Scholar 

  • Takada-Hoshino, Y., & Matsumoto, N. (2004). An improved DNA extraction method using skim milk from soils that strongly adsorb DNA. Microbes and Environments, 19, 13–19.

    Article  Google Scholar 

  • Tay, S. T., Hemond, H. F., Polz, M. F., Cavanaugh, C. M., Dejesus, I., & Krumholz, L. R. (1998). Two new Mycobacterium strains and their role in toluene degradation in a contaminated stream. Applied and Environmental Microbiology, 64, 1715–1720.

    CAS  Google Scholar 

  • Vidali, M. (2001). Bioremediation. An overview. Pure and Applied Chemistry, 73, 1163–1172.

    Article  CAS  Google Scholar 

  • Widdel, F., & Pfennig, N. (1981). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Archives of Microbiology, 129, 395–400.

    Article  CAS  Google Scholar 

  • Yokota, A., Tamura, T., Takeuchi, M., Weiss, N., & Stackebrandt, E. (1994). Transfer of Propionibacterium innocuum Pitcher and Collins 1991 to Propioniferax gen. nov. as Propioniferax innocua comb. nov. International Journal of Systematic Bacteriology, 44, 579–582.

    Article  CAS  Google Scholar 

  • Yu, C.-P., & Chu, K.-H. (2005). A quantitative assay for linking microbial community function and structure of a naphthalene-degrading microbial consortium. Environmental Science & Technology, 39, 9611–9619.

    Article  CAS  Google Scholar 

  • Zehraoui, A., Wendell, D., & Sorial, G. A. (2014). Biodegradation of a ternary mixture of hydrophobic and hydrophilic VOCs in trickle bed air biofilters. Water, Air, and Soil Pollution, 225, 2075.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshikawa, M., Zhang, M. & Toyota, K. Enhancement and Biological Characteristics Related to Aerobic Biodegradation of Toluene with Co-Existence of Benzene. Water Air Soil Pollut 227, 340 (2016). https://doi.org/10.1007/s11270-016-3050-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3050-5

Keywords

Navigation