Skip to main content
Log in

Combining Biological and Chemical Screenings to Assess Cytotoxicity of Emerging Contaminants in Discharges into Surface Water

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Combining bioassays and analytical chemistry screenings is a powerful approach to assess emerging organic micropollutants which are the main contributors to toxic potentials in complex mixtures of water matrices. The aim of this study was to assess the cytotoxic effect of the occurrence of emerging organic micropollutants discharged into river water through industrial wastewater and treated effluents. The cytotoxic effects of surface water, treated effluents, and industrial wastewater were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Then, organic micropollutants of various chemical groups were identified using a detailed non-target screening based on gas chromatography coupled with a mass spectrometry detector (GC/MS). A significant cytotoxic effect on human intestinal epithelial Caco-2 cells was observed for all the samples. Caco-2 cell viability decreased by 17.99, 33.77, and 24.54 % for surface water, treated wastewater, and industrial water, respectively. The organic chemical compounds responsible for this toxic potential were identified using non-target chemical screening. Statistical correlation between cytotoxicity and the presence of emerging contaminants revealed that the cytotoxic effect was mainly due (r ≥ 0.42) to the occurrence of cyclopentasiloxane, decamethyl and cyclohexasiloxane, dodecamethyl, d-limonene, and ergoline-8-methanol, 8,9-didehydro-6-methyl while cytotoxicity was highly negatively correlated (r ≤ −0.42) to 2-ethylhexyl salicylate, 3-isopropoxy-1,1,1,7,7,7-hexamethyl-3,5,5-tris(trimethyl siloxy)tetrasiloxane, 6-acetyl-1,1,2,4,4,7-hexamethyltetralin, and (3-aminopropyltriethoxysilane. Seventy-six other compounds detected by GC/MS showed no correlation to cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abu Ngozi, E., & Ezeugwu, S. C. (2008). Risk evaluation of industrial wastewater on plants using onion (Allium Cepa L.) chromosome aberration assay. Journal of Tropical Agriculture and Food Environment and Extension, 7, 242–248. ISSN 1119–7455.

    Google Scholar 

  • Artursson, P., Palm, K., & Luthman, K. (2001). Caco-2 monolayers in experimental and theoretical predictions of drug transport. Advanced Drug Delivery Reviews, 46, 27–43.

    Article  CAS  Google Scholar 

  • Belsito, D., Bickers, D., Bruze, M., Calow, P., Greim, H., Hanifin, J. M., Rogers, A. E., Saurat, J. H., Sipes, I. G., Tagami, H., & The RIFM Expert Panel. (2007). A toxicologic and dermatologic assessment of salicylates when used as fragrance ingredients. Food and Chemical Toxicology, 45, S318–S336.

    Article  Google Scholar 

  • Belsito, D., Bickers, D., Bruze, M., Calow, P., Greim, H., Hanifin, J. M., Rogers, A. E., Saurat, J. H., Sipes, I. G., & Tagami, H. (2008). A toxicologic and dermatologic assessment of cyclic and non-cyclic terpene alcohols when used as fragrance ingredients. Food and Chemical Toxicology, 46, S1–S71.

    Google Scholar 

  • Berridge, M. V., & Tan, A. S. (1993). Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Archives of Biochemistry and Biophysics, 303, 474–482.

    Article  CAS  Google Scholar 

  • Brooke D.N., Crookes, M.J., Gray, D., & Robertson, S. (2009). Environmental risk assessment report: dodecamethylcyclohexasiloxane. Environment Agency, Rio House.

  • Canadian Institutes of Health Research. (2014). Elymoclavine (T3D3694). Available at http://www.t3db.ca/toxins/T3D3694. (Accessed September 2015).

  • Cargouet, M., Perdiz, D., Mouatassim-Souali, D., Tamisier-Karolak, A., & Levi, S. (2004). Assessment of river contamination by estrogenic compounds in Paris area (France). Science of Total Environment, 324, 55–66. doi:10.1016/j.scitotenv.2003.10.035.

    Article  CAS  Google Scholar 

  • Cirja, M., Ivashechkin, P., Schaffer Philippe, A., & Corvini, F. X. (2008). Factors affecting the removal of organic micropollutants from wastewater in conventional treatment plants (CTP) and membrane bioreactors (MBR). Reviews of Environmental Science and Biotechnology, 7, 61–78.

    Article  CAS  Google Scholar 

  • Danish Ministry of the Environment. Environmental Protection Agency. (2013). Evaluation of health hazards by exposure to d-Limonen and proposal of a health-based quality criterion for ambient air. Environmetal Project No. 1496, 2013. Available at http://www2.mst.dk/Udgiv/publications/2013/08/978-87-93026-33-9.pdf. (Accessed March 2014).

  • Düsman, E., Gonçalves, L. A., Reusing, A. F., Martin, P. G., Mariucci, R. G., & Vicentini, V. E. P. (2012). Cytotoxic potential of waters of the streams Mandacaru, Maringá, Miosótis and Nazareth in the urban area of Maringá, Paraná State, Brazil. Acta Science Maringá, 34, 311–318. doi:10.4025/actascibiolsci.v34i3.8275.

    Google Scholar 

  • Filipsson, F., Bard, A., Åseda, J., & Karlsson, S. (2004). HERA risk assessment of AHTN (6-Acetyl-1,1,2,4,4,7-hexamethyltetraline) human and environmental risk assessment on ingredients of household cleaning products AHTN (6-acetyl-1,1,2,4,4,7-hexamethyltetraline) (CAS 1506-02-1 and 21145-77-7). Available at http://www.heraproject.com/files/28-hh-04pcm%20ahtn%20hera%20human%20health%20discl%20ed2.pdf (Accessed March 2014).

  • Fuerhacker, M., Lemmens-Gruber, R., & Studeni, C. (2005). Novel screening test to assess the potential environmental toxicity of waste water samples. Environmental Toxicology and Pharmacology, 19, 385–388. doi:10.1016/j.etap.2004.09.007.

    Article  CAS  Google Scholar 

  • Gan, L. L., & Dhiren, R. T. (1997). Applications of the Caco-2 model in the design and development of orally active drugs: elucidation of biochemical and physical barriers posed by the intestinal epithelium. Advanced Drug Delivery Reviews, 23, 77–81. doi:10.1016/S0169-409X(96)00427-9.

    Article  CAS  Google Scholar 

  • Glahn, R. P., Lee, O. A., Yeung, A., Goldman, M. I., & Miller, D. D. (1998). Caco-2 cell ferritin formation predicts nonradiolabeled food iron availability in an in vitro digestion/Caco-2 cell culture model. Journal of Nutrition, 128, 257–264.

    CAS  Google Scholar 

  • Grover, I. S., & Kaur, S. J. (1999). Genotoxicity of waste water samples from sewage and industrial effluents detected by Allium root anaphase aberration and micronucleus assays. Mutation Research, 426, 183–188. doi:10.1016/S0027-5107(99)00065-2.

    Article  CAS  Google Scholar 

  • Han, J., Takenaka, M., Talorete, T. P. N., Funamizo, N., & Isoda, H. (2007). Toxicity assessment of wastewater by proteomics analysis. Environmental Science, 14, 35–41.

    CAS  Google Scholar 

  • Johnson, W. (2009). Amended Final Report of the Cosmetic Ingredient Review Expert Panel of the safety assessment of cyclomethicone, cyclotetrasiloxane, cyclopentasiloxane, cyclohexasiloxane, and cycloheptasiloxane. 2009. Available at http://www.cyclosiloxanes.org/uploads/Modules/Links/17.-cyclomethicones-final-cir-report.pdf. (Accessed January 2015).

  • Kim, J. S., Mitchell, S., Kijek, P., Tsume, Y., Hilfinger, J., & Amidon, G. L. (2006). The suitability of an in situ perfusion model for permeability determinations: utility for BCS class I biowaiver requests. Molecular Pharmacology, 3, 686–694.

    Article  CAS  Google Scholar 

  • Kuster, M., de Alda, M. J. L., Hernando, M. D., Petrovic, M., Alonso, J. M., & Barcelo, D. (2008). Analysis and occurrence of pharmaceuticals, estrogens, progestogens and polar pesticides in sewage treatment plant effluents, river water and drinking water in the Llobregat river basin (Barcelona, Spain). Journal of Hydrology, 358, 112–123. doi:10.1016/j.jhydrol.2008.05.030.

    Article  CAS  Google Scholar 

  • Lambert, A.H., & Hopkins, M.N. (1996). AHTN: 13-week oral (dietary) toxicity study in the rat with a 4 week treatment-free period. Toxicol Laboraties Limited, Ledbury, England. Toxicol report reference: RFA/5/95.

  • Lassen, C., Hansen, C.L., Mikkelsen, S.H., & Maag, J. (2005). Siloxanes—consumption, toxicity and alternatives. Danish Ministry of the Environment Environmental Project No. 1031 2005 Miljøprojekt. Environmental protection agency 2005. Available at http://www2.mst.dk/Udgiv/publications/2005/87-7614-756-8/pdf/87-7614-757-6.pdf. (Accessed March 2014).

  • Limam, A., Talorete, T. P. N., Ben Sik, A. M., Kawano, M., Ben Rejeb Jenhani, A., Abe, Y., Ghrabi, A., & Isoda, H. (2007). Assessment of estrogenic activity in Tunisian water and wastewater by E-screen assay. Environmental Science, 14, 043–052.

    CAS  Google Scholar 

  • Mahomed, S. I., Voyi, K. V. V., Aneck-Hahn, N. H., & de Jager, C. (2008). Oestrogenicity and chemical target analysis of water from small-sized industries in Pretoria, South Africa. Water SA, 34, 357–364. ISSN: 0378–4738.

    CAS  Google Scholar 

  • Narita, H., Talorete, T. P. N., Han, J., Funamizu, N., & Isoda, H. (2007). Human intestinal cells incubated with activated sludge and lipoposaccharide express Hsp90b. Environmental Science, 14, 35–39.

    CAS  Google Scholar 

  • Natoli, M., Felsani, A., Ferruzza, S., Sambuy, Y., Canali, R., & Scarino, M. L. (2009). Mechanisms of defence from Fe (II) toxicity in human intestinal Caco-2 cells. Toxicology In Vitro, 23, 1510–1515.

    Article  CAS  Google Scholar 

  • Núñez, M. T., Tapia, V., Toyokuni, S., & Okada, S. (2001). Iron-induced oxidative damage in colon carcinoma (Caco-2) cells. Free Radical Research, 34, 57–68. doi:10.1080/10715760100300061.

    Article  Google Scholar 

  • OARS. (2015). Decamethylcyclopentasiloxane (D5), Workplace environmental exposure level. Copyright 2015 OARS – 160 Panzeca Way, Cincinnati, OH 45267–0056. Available at http://www.tera.org/OARS/D5%20WEEL%20FINAL%202015.pdf. (Accessed February 2016).

  • Petrie, B., Barden, R., & Kasprzyk-Hordern, B. (2015). A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Research, 72, 3–27. doi:10.1016/j.watres.2014.08.053.

    Article  CAS  Google Scholar 

  • PIP Action Campaign: Public consultation D4 & D5. (2014). Evidence Submission PIP Action Campaign ECHA review of Octamethylcyclotetrasiloxane (D4) & Decamethylcyclopentasiloxane (D5). London, 7 January 2014. Available at http://pipactioncampaign.org/PIPActionCampaignECHAsubmission.pdf. (Accessed September 2015).

  • Prinsloo, S., Pieters, R., & Bezuidenhout, C. C. (2013). A cell viability assay to determine the cytotoxic effects of water contaminated by microbes. South Africain Journal of Science, 109, 1–4. doi:10.1590/sajs.2013/20120069.

    Article  CAS  Google Scholar 

  • Rohr, A. C., Wilkins, C. K., Clausen, P. A., Hammer, M., Nielsen, G. D., Wolkoff, P., & Spengler, J. D. (2002). Upper airway and pulmonary effects of oxidation products of (+)-α-pinene, d-limonene, and isoprene in BALB/c mice. Inhalation Toxicology, 14, 663–684.

    Article  CAS  Google Scholar 

  • SCCS (Scientific Committee on Consumer Safety). (2015). Opinion on decamethylcyclopentasiloxane (cyclopentasiloxane, D5) in cosmetic products, SCCS/1549/15, 25 March 2015. Available at http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_174.pdf. (Accessed February 2016).

  • Shaikh, H., Memon, N., Bhanger, M. I., & Nizamani, S. M. (2014). GC/MS based non-target screening of organic contaminants in River Indus and its tributaries in Sindh (Pakistan). Pakistan Journal of Analytical and Environmental Chemistry, 15, 42–65.

    Google Scholar 

  • Shappell, N. W. (2006). Estrogenic activity in the environment: municipal wastewater effluent, river, ponds, and wetlands. Journal of Environmental Quality, 35, 122–132.

    Article  CAS  Google Scholar 

  • Shareef, A., Kookana, R., Kumar, A., & Tjandraatmadja, G. (2008). Sources of emerging organic contaminants in domestic wastewater: an assessment based on literature review.© Commonwealth of Australia, Water for Healthy Country Flagship Report series.

  • Silicones Environmental Health and Safety Council SEHSC North America. (2009). D4 and D5 record of environmental safety: a current analysis of the Canadian Chemical Management Program’s Review and Assessment Process. Available at https://sehsc.americanchemistry.com/Research-Science-Health-and-Safety/D4-and-D5-Record-of-Environmental-Safety.pdf. (Accessed June 2015).

  • Singhal, N., Song, Y., Johnson, A., & Swift, S. (2009). Estrogenic endocrine disrupting compounds review and analytical procedures for GC-MS and ELISA analyses. Prepared for Auckland Regional Council Environmental Research Technical Report – first edition.

  • Smital, T., Terzic, S., Zaja, R., Senta, I., Pivcevic, B., Popovic, M., Mikac, I., Tollefsen, K. E., Thomas, K. V., & Ahel, M. (2011). Assessment of toxicological profiles of the municipal wastewater efflents using chemical analyses and bioassays. Ecotoxicology and Environmental Safety, 74, 844–851. doi:10.1016/j.ecoenv.2010.11.010.

    Article  CAS  Google Scholar 

  • Stumpf, M., Ternes, T. A., Haberer, K., & Baumann, W. (1996). Determination of natural and synthetic estrogens in sewage plants and river water. Vom Wasser, 87, 251–261. ISSN 0083–6915.

    CAS  Google Scholar 

  • Sun, J. (2007). D-Limonene: safety and clinical applications. Alternative Medicine Review, 12, (3).

  • UNEF. (2003). 3-Aminopropyltrithoxysilane (APTES). UNEP publications SIDS Initial Assessment Report for SIAM 17 Arona, Italy, 11–14 November 2003. Available at http://www.inchem.org/documents/sids/sids/919302.pdf (Accessed March 2014).

  • Van de Waterbeemd, H. (1998). The fundamental variables of the biopharmaceutics classification system (BCS): a commentary. European Journal of Pharmaceutical Sciences, 7, 1–3.

    Article  Google Scholar 

  • Walgren, R. A., Karnaky, K. J., & Lindenmayer, G. E. (2000). Efflux of dietary flavonoid quercetin 4′-β-glucoside across human intestinal Caco-2 cell monolayers by apical multidrug resistance-associated protein-2. Journal of Pharmacology and Experimental Therapeutics, 294, 830–835.

    CAS  Google Scholar 

  • Wang, L., Ying, G. G., Zhao, J. L., Liu, S., Yang, B., Zhou, L. J., Tao, R., & Su, H. C. (2011). Assessing estrogenic activity in surface water and sediment of the Liao River system in northeast China using combined chemical and biological tools. Environmental Pollution, 159, 148–156.

    Article  CAS  Google Scholar 

  • Wepener, V., Van Dyka, C., Bervoets, L., O’Briena, G., Covaci, A., & Cloete, Y. (2011). An assessment of the influence of multiple stressors on the Vaal River, South Africa. Physics and Chemistry of the Earth, 36, 949–962. doi:10.1016/j.pce.2011.07.075.

    Article  Google Scholar 

  • Žegura, B., Heath, E., Černoša, A., & Filipič, M. (2009). Combination of in vitro bioassay for the determination of cytotoxic and genotoxic potential of wastewater, surface water and drinking water samples. Chemosphere, 75, 1453–1460. doi:10.1016/j.chemosphere.2009.02.041.

    Article  Google Scholar 

  • Zhang, Z., Hibberd, A., & Zhou, J. L. (2008). Analysis of emerging contaminants in sewage effluent and river water: comparison between spot and passive sampling. Analytica Chimica Acta, 607, 137–144. doi:10.1016/j.aca.2007.11.024.

    Article  Google Scholar 

  • Zödl, B., Sargazi, M., Zeiner, M., Roberts, N. B., Steffan, I., Marktl, W., & Ekmekcioglu, C. (2004). Toxicological effects of iron on intestinal cells. Cell Biochemistry Function, 22, 143–148. doi:10.1002/cbf.1065.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by funds from the SATREPS project for Valorization of Bio-resources in Semi-arid and Arid Land for Regional Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selma Etteieb.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etteieb, S., Cherif, S., Kawachi, A. et al. Combining Biological and Chemical Screenings to Assess Cytotoxicity of Emerging Contaminants in Discharges into Surface Water. Water Air Soil Pollut 227, 341 (2016). https://doi.org/10.1007/s11270-016-3049-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3049-y

Keywords

Navigation