Skip to main content
Log in

Hydrophobic Modification of Platanus Fruit Fibers as Natural Hollow Fibrous Sorbents for Oil Spill Cleanup

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The Platanus fruit fibers (PFFs) with unique hollow tubular structures were successfully utilized in the preparation of an efficient oil sorbents for the first time by chemical modification with acetic anhydride. The structure and morphology of the pristine PFFs (p-PFFs) and acetylated PFFs (a-PFFs) were characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The effects of acetic anhydride to PFFs ratio, catalyst concentration, reaction temperature, and time on the weight percent gain (WPG) and oil sorption capacity were particularly investigated in detail. The results showed the hydrophobic modification of p-PFFs contributed to the enhancement of the sorption capacity of a-PFFs for various oils and organic solvents. The sorption kinetic analysis indicated the oil sorption data were fitted well with a pseudo-second-order kinetic model. And the oil-filled a-PFFs exhibited high oil retention ability with less than 30 % of the sorbed oil lost after 2-h dripping. Moreover, a-PFFs showed little loss of initial sorption capacities after eight sorbing/desorbing cycles with the recovery of sorbents by n-hexane extraction. The natural renewable a-PFFs are proved to be a promising candidate for large-scale removal of spilled oils from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Annunciado, T. R., Sydenstricker, T. H., & Amico, S. C. (2005). Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Marine Pollution Bulletin, 50, 1340–1346.

    Article  CAS  Google Scholar 

  • Asadpour, R., Sapari, N. B., Isa, M. H., Kakooei, S., & Orji, K. U. (2015). Acetylation of corn silk and its application for oil sorption. Fibers and Polymers, 16, 1830–1835.

    Article  CAS  Google Scholar 

  • Ashori, A., Babaee, M., Jonoobi, M., & Hamzeh, Y. (2014). Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohydrate Polymers, 102, 369–375.

    Article  CAS  Google Scholar 

  • Bi, H., Xie, X., Yin, K., Zhou, Y., Wan, S., He, L., Xu, F., Banhart, F., Sun, L., & Ruoff, R. S. (2012). Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Advanced Functional Materials, 22, 4421–4425.

    Article  CAS  Google Scholar 

  • Bulota, M., Kreitsmann, K., Hughes, M., & Paltakari, J. (2012). Acetylated microfibrillated cellulose as a toughening agent in poly(lactic acid). Journal of Applied Polymer Science, 126, E449–E458.

    Article  Google Scholar 

  • Cao, Y., Zhang, X., Tao, L., Li, K., Xue, Z., Feng, L., & Wei, Y. (2013). Mussel-inspired chemistry and Michael addition reaction for efficient oil/water separation. ACS Applied Materials & Interfaces, 5, 4438–4442.

    Article  CAS  Google Scholar 

  • Choi, S.-J., Kwon, T.-H., Im, H., Moon, D.-I., Baek, D. J., Seol, M.-L., Duarte, J. P., & Choi, Y.-K. (2011). A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS Applied Materials & Interfaces, 3, 4552–4556.

    Article  CAS  Google Scholar 

  • Deng, J., Yang, B., Chen, C., & Liang, J. (2015). Renewable eugenol-based polymeric oil-absorbent microspheres: preparation and oil absorption ability. ACS Sustainable Chemistry & Engineering, 3, 599–605.

    Article  CAS  Google Scholar 

  • Dong, T., Xu, G., & Wang, F. (2015). Adsorption and adhesiveness of kapok fiber to different oils. Journal of Hazardous Materials, 296, 101–111.

    Article  CAS  Google Scholar 

  • Galamboš, M., Suchánek, P., & Rosskopfová, O. (2012). Sorption of anthropogenic radionuclides on natural and synthetic inorganic sorbents. Journal of Radioanalytical and Nuclear Chemistry, 293, 613–633.

    Article  Google Scholar 

  • Hu, C., Reddy, N., Yan, K., & Yang, Y. (2011). Acetylation of chicken feathers for thermoplastic applications. Journal of Agricultural and Food Chemistry, 59, 10517–10523.

    Article  CAS  Google Scholar 

  • Husseien, M., Amer, A. A., El-Maghraby, A., & Taha, N. A. (2009). Availability of barley straw application on oil spill clean up. International Journal of Environmental Science and Technology, 6, 123–130.

    Article  CAS  Google Scholar 

  • Hussein, M., Amer, A. A., & Sawsan, I. I. (2008). Oil spill sorption using carbonized pith bagasse: trial for practical application. International Journal of Environmental Science and Technology, 5, 233–242.

    Article  CAS  Google Scholar 

  • Jonoobi, M., Harun, J., Mathew, A. P., Hussein, M. Z. B., & Oksman, K. (2009). Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose, 17, 299–307.

    Article  Google Scholar 

  • Karakasi, O. K., & Moutsatsou, A. (2010). Surface modification of high calcium fly ash for its application in oil spill clean up. Fuel, 89, 3966–3970.

    Article  CAS  Google Scholar 

  • Korpe, S., Erdoğan, B., Bayram, G., Ozgen, S., Uludag, Y., & Bicak, N. (2009). Crosslinked DADMAC polymers as cationic super absorbents. Reactive and Functional Polymers, 69, 660–665.

    Article  CAS  Google Scholar 

  • Li, D., Zhu, F. Z., Li, J. Y., Na, P., & Wang, N. (2012). Preparation and characterization of cellulose fibers from corn straw as natural oil sorbents. Industrial & Engineering Chemistry Research, 52, 516–524.

    Article  Google Scholar 

  • Li, M. M., Pan, H. C., Huang, S. L., & Scholz, M. (2013). Controlled experimental study on removing diesel oil spillages using agricultural waste products. Chemical Engineering & Technology, 36, 673–680.

    Article  CAS  Google Scholar 

  • Li, P., Qiao, Y., Zhao, L., Yao, D., Sun, H., Hou, Y., Li, S., & Li, Q. (2015). Electrospun PS/PAN fibers with improved mechanical property for removal of oil from water. Marine Pollution Bulletin, 93, 75–80.

    Article  CAS  Google Scholar 

  • Likon, M., Remskar, M., Ducman, V., & Svegl, F. (2013). Populus seed fibers as a natural source for production of oil super absorbents. Journal of Environmental Management, 114, 158–167.

    Article  CAS  Google Scholar 

  • Lin, K.-Y. A., & Chen, S.-Y. (2015). Enhanced removal of oil droplets from oil-in-water emulsions using polyethylenimine-modified rice husk. Waste and Biomass Valorization, 6, 495–505.

    Article  CAS  Google Scholar 

  • Mashkour, M., Afra, E., Resalatib, H., & Mashkourc, M. (2015). Moderate surface acetylation of nanofibrillatedcellulose for the improvement of paper strength and barrier properties. RSC Advances, 5, 60179–60187.

    Article  CAS  Google Scholar 

  • Mishraa, P., & Balasubramanian, K. (2014). Nanostructured microporous polymer composite imprinted with superhydrophobic camphor soot, for emphatic oil–water separation. RSC Advances, 4, 53291–53296.

    Article  Google Scholar 

  • Nguyen, D. D., Tai, N.-H., Lee, S.-B., & Kuo, W.-S. (2012). Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy & Environmental Science, 5, 7908.

    Article  CAS  Google Scholar 

  • Pazouki, N., Sankian, M., Leung, P. T., Nejadsattari, T., Khavari-Nejad, R. A., & Varasteh, A. R. (2009). Identification of cyclophilin as a novel allergen from Platanus orientalis pollens by mass spectrometry. Journal of Bioscience and Bioengineering, 107, 215–217.

    Article  CAS  Google Scholar 

  • Pie, H. V., & Mitchelmore, C. L. (2015). Acute toxicity of current and alternative oil spill chemical dispersants to early life stage blue crabs (Callinectes sapidus). Chemosphere, 128, 14–20.

    Article  CAS  Google Scholar 

  • Rajakovic, V., Aleksic, G., Radetic, M., & Rajakovic, L. (2007). Efficiency of oil removal from real wastewater with different sorbent materials. Journal of Hazardous Materials, 143, 494–499.

    Article  CAS  Google Scholar 

  • Robles, C. A., Carmarán, C. C., & Lopez, S. E. (2011). Screening of xylophagous fungi associated with platanus acerifolia in urban landscapes: biodiversity and potential biodeterioration. Landscape and Urban Planning, 100, 129–135.

    Article  Google Scholar 

  • Sai, H., Fu, R., Xing, L., Xiang, J., Li, Z., Li, F., & Zhang, T. (2015). Surface modification of bacterial cellulose aerogels’ web-like skeleton for oil/water separation. ACS Applied Materials & Interfaces, 7, 7373–7381.

    Article  CAS  Google Scholar 

  • Said Ael, A., Ludwick, A. G., & Aglan, H. A. (2009). Usefulness of raw bagasse for oil absorption: a comparison of raw and acylated bagasse and their components. Bioresource Technology, 100, 2219–2222.

    Article  Google Scholar 

  • Seidel, M., Kleindienst, S., Dittmar, T., Joye, S. B., & Medeiros, P. M. (2015). Biodegradation of crude oil and dispersants in deep seawater from the Gulf of Mexico: insights from ultra-high resolution mass spectrometry. Deep Sea Research Part II: Topical Studies in Oceanography. doi:10.1016/j.dsr2.2015.05.012.

    Google Scholar 

  • Silva, U. G., Melo, M. A., Silva, A. F., & Farias, R. F. (2003). Adsorption of crude oil on anhydrous and hydrophobized vermiculite. Journal of Colloid and Interface Science, 260, 302–304.

    Article  Google Scholar 

  • Singh, V., Kendall, R. J., Hake, K., & Ramkumar, S. (2013). Crude oil sorption by raw cotton. Industrial & Engineering Chemistry Research, 52, 6277–6281.

    Article  CAS  Google Scholar 

  • Sun, R. C., & Sun, X. F. (2002). Structural and thermal characterization of acetylated rice, wheat, rye, and barley straws and poplar wood fibre. Industrial Crops and Products, 16, 225–235.

    Article  CAS  Google Scholar 

  • Sun, X. F., Sun, R., & Sun, J. X. (2002). Acetylation of rice straw with or withoutcatalysts and itcharacterization as a natural sorbent in oil spillcleanup. Journal of Agricultural and Food Chemistry, 50, 6428–6433.

    Article  CAS  Google Scholar 

  • Sun, X. F., Sun, R. C., & Sun, J. X. (2004). Acetylation of sugarcane bagasse using NBS as a catalyst under mild reaction conditions for the production of oil sorption-active materials. Bioresource Technology, 95, 343–350.

    Article  CAS  Google Scholar 

  • Sun, P., Hui, C., Azim Khan, R., Du, J., Zhang, Q., & Zhao, Y. H. (2015). Efficient removal of crystal violet using Fe3O4-coated biochar: the role of the Fe3O4 nanoparticles and modeling study their adsorption behavior. Scientific Reports, 5, 12638.

    Article  CAS  Google Scholar 

  • Teli, M. D., & Valia, S. P. (2013a). Acetylation of banana fibre to improve oil absorbency. Carbohydrate Polymers, 92, 328–333.

    Article  CAS  Google Scholar 

  • Teli, M. D., & Valia, S. P. (2013b). Acetylation of jute fiber to improve oil absorbency. Fibers and Polymers, 14, 915–919.

    Article  CAS  Google Scholar 

  • van Gelderen, L., Brogaard, N. L., Sørensen, M. X., Fritt-Rasmussen, J., Rangwala, A. S., & Jomaas, G. (2015). Importance of the slick thickness for effective in-situ burning of crude oil. Fire Safety Journal, 78, 1–9.

    Article  Google Scholar 

  • Ventikos, N. P., Vergetis, E., Psaraftis, H. N., & Triantafyllou, G. (2004). A high-level synthesis of oil spill response equipment and countermeasures. Journal of Hazardous Materials, 107, 51–58.

    Article  CAS  Google Scholar 

  • Wang, J., & Wang, A. (2013). Acetylated modification of kapok fiber and application for oil absorption. Fibers and Polymers, 14, 1834–1840.

    Article  CAS  Google Scholar 

  • Wang, J., Zheng, Y., & Wang, A. (2013a). Coated kapok fiber for removal of spilled oil. Marine Pollution Bulletin, 69, 91–96.

    Article  CAS  Google Scholar 

  • Wang, J., Zheng, Y., & Wang, A. (2013b). Preparation and properties of kapok fiber enhanced oil sorption resins by suspended emulsion polymerization. Journal of Applied Polymer Science, 127, 2184–2191.

    Article  CAS  Google Scholar 

  • Wang, H., Wang, E., Liu, Z., Gao, D., Yuan, R., Sun, L., & Zhu, Y. (2015a). A novel carbon nanotubes reinforced superhydrophobic and superoleophilic polyurethane sponge for selective oil–water separation through a chemical fabrication. Journal of Materials Chemistry A, 3, 266–273.

    Article  CAS  Google Scholar 

  • Wang, J., Geng, G., Wang, A., Liu, X., Du, J., Zou, Z., Zhang, S., & Han, F. (2015b). Double biomimetic fabrication of robustly superhydrophobic cotton fiber and its application in oil spill cleanup. Industrial Crops and Products, 77, 36–43.

    Article  CAS  Google Scholar 

  • Warr, L. N., Perdrial, J. N., Lett, M.-C., Heinrich-Salmeron, A., & Khodja, M. (2009). Clay mineral-enhanced bioremediation of marine oil pollution. Applied Clay Science, 46, 337–345.

    Article  CAS  Google Scholar 

  • Yang, Y., Deng, Y., Tong, Z., & Wang, C. (2014). Multifunctional foams derived from poly(melamineformaldehyde) as recyclable oil absorbents. Journal of Materials Chemistry A, 2, 9994.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Shaanxi Province (Grant 2015JQ5173) and Fundamental Research Funds for the Central Universities (Grant 310829162016).

Author information

Authors and Affiliations

Corresponding author

Correspondence to Li Yang.

Additional information

Li Yang and Ziru Wang did the same work quantity as co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Wang, Z., Li, X. et al. Hydrophobic Modification of Platanus Fruit Fibers as Natural Hollow Fibrous Sorbents for Oil Spill Cleanup. Water Air Soil Pollut 227, 346 (2016). https://doi.org/10.1007/s11270-016-3043-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3043-4

Keywords