Skip to main content

Predictive Models for Determination of E. coli Concentrations at Inland Recreational Beaches

Abstract

Given the 24-h turn-around time before swimming advisories are released, advisories issued to protect public health really only indicates ‘it may be unsafe to swim yesterday’. Predictive modelling for Escherichia coli concentrations at inflow-impacted beaches may be a favourable alternative to the current, routinely criticised monitoring approach. Using a total of 482 sets of meteorological and bacteriological data covering 14 swimming seasons, as well as environmental data of 10 inflow streams, this study developed models that could be used for predicting E. coli concentrations at five Lake Rotorua beaches. The models include predictor variables such as wind speed, antecedent rainfall, suspended solids at Puarenga, Utuhina and Ngongotaha stream inflows and particulate inorganic phosphorus concentration at Puarenga stream inflow. The combined 2011–2012 models had an average-adjusted R 2 of 0.73, root mean square error (RMSE) of 0.33 logCFU/100 mL and captured 38 % of the variance in the validation data when used to predict E. coli concentrations for an additional 2 years (2013–2014). Among the individual beach models, predictive accuracy ranged from 88.89 to 92.31 % for the three beaches considered in the study. The developed models can provide a faster estimation of E. coli condition, potentially assisting local beach managers in the decision process related to swimming advisories issuance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abell, J. M., & Hamilton, D. P. (2015). Biogeochemical processes and phytoplankton nutrient limitation in the inflow transition zone of a large eutrophic lake during a summer rain event. Ecohydrology, 8(2), 243–262.

    CAS  Article  Google Scholar 

  2. Ahmad, A., Dada, A. C., Usup, G., & Heng, L. Y. (2013). Validation of the enterococci indicator for bacteriological quality monitoring of beaches in Malaysia using a multivariate approach. Springer Plus, 2(1), 425.

    Article  Google Scholar 

  3. Alkan, U., Elliott, D., & Evison, L. (1995). Survival of enteric bacteria in relation to simulated solar radiation and other environmental factors in marine waters. Water Research, 29(9), 2071–2080.

    CAS  Article  Google Scholar 

  4. Auer, M. T., & Niehaus, S. L. (1993). Modeling fecal coliform bacteria—I. Field and laboratory determination of loss kinetics. Water Research, 27(4), 693–701.

    Article  Google Scholar 

  5. Boehm, A., Grant, S., Kim, J., Mowbray, S., McGee, C., Clark, C., Foley, D., & Wellman, D. (2002). Decadal and shorter period variability of surf zone water quality at Huntington Beach, California. Environmental Science & Technology, 36(18), 3885–3892.

    CAS  Article  Google Scholar 

  6. Boehm, A. B. (2007). Enterococci concentrations in diverse coastal environments exhibit extreme variability. Environmental Science & Technology, 41(24), 8227–8232.

    CAS  Article  Google Scholar 

  7. Boehm, A. B., Ashbolt, N. J., Colford, J. M., Dunbar, L. E., Fleming, L. E., Gold, M. A., Hansel, J. A., Hunter, P. R., Ichida, A. M., McGee, C. D., Soller, J. A., & Weisberg, S. B. (2009). A sea change ahead for recreational water quality criteria, Journal of Water and Health 7, 9–20.

  8. BoPRC. (2010). Soils of the Bay of Plenty Volume 1: Western Bay of Plenty Environmental Publication 2010/11-1, 182pp.

  9. Burger, D. F., Hamilton, D. P., & Pilditch, C. A. (2008). Modelling the relative importance of internal and external nutrient loads on water column nutrient concentrations and phytoplankton biomass in a shallow polymictic lake. Ecological Modelling, 211(3), 411–423.

    Article  Google Scholar 

  10. Burkhardt, W., Calci, K. R., Watkins, W. D., Rippey, S. R., & Chirtel, S. J. (2000). Inactivation of indicator microorganisms in estuarine waters. Water Research, 34(8), 2207–2214.

    CAS  Article  Google Scholar 

  11. Coyne, M., Gilfillen, R., Rhodes, R., & Blevins, R. (1995). Soil and fecal coliform trapping by grass filter strips during simulated rain. Journal of Soil and Water Conservation, 50(4), 405–408.

    Google Scholar 

  12. Crowther, J., Kay, D., & Wyer, M. D. (2001). Relationships between microbial water quality and environmental conditions in coastal recreational waters: the Fylde coast, UK. Water Research, 35(17), 4029–4038.

    CAS  Article  Google Scholar 

  13. Cyterski, M., Zhang, S., White, E., Molina, M., Wolfe, K., Parmar, R., & Zepp, R. (2012). Temporal synchronization analysis for improving regression modeling of fecal indicator bacteria levels. Water, Air, & Soil Pollution, 223(8), 4841–4851.

    CAS  Article  Google Scholar 

  14. Cyterski, M., Brooks, W., Galvin, M., Wolfe, K., Carvin, R., Roddick, T., Fienen, M, & S. Corsi. (2015). Virtual Beach 3.0.4: User’s Guide Guide, USEPA. Available online at http://www.epa.gov/sites/production/files/2015-02/documents/vb3_manual_3.0.4.pdf. Accessed 1 March 2016.

  15. Dada, A. C., Ahmad, A., Usup, G., & Heng, L. Y. (2013). Speciation and antimicrobial resistance of enterococci isolated from recreational beaches in Malaysia. Environmental Monitoring and Assessment, 185(2), 1583–1599.

    CAS  Article  Google Scholar 

  16. Dada, A. C., Asmat, A., Gires, U., Heng, L. Y., & Deborah, B. O. (2012). Bacteriological monitoring and sustainable management of beach water quality in Malaysia: problems and prospects. Global Journal of Health Science, 4(3), p126.

    Article  Google Scholar 

  17. de Brauwere, A., Ouattara, N. K., & Servais, P. (2014). Modeling fecal indicator bacteria concentrations in natural surface waters: a review. Critical Reviews in Environmental Science and Technology, 44(21), 2380–2453.

    Article  Google Scholar 

  18. Devane, M., Gilpin, B., & Moriarty, E. (2015). Human health risks of faecal pollution from different sources: a review of the literature.

  19. Duran, A., Muniesa, M., Mendez, X., Valero, F., Lucena, F., & Jofre, J. (2002). Removal and inactivation of indicator bacteriophages in fresh waters. Journal of Applied Microbiology, 92(2), 338–347.

    CAS  Article  Google Scholar 

  20. EPA. (1976). Quality criteria for water. Washington, DC: U. S. Environmental Protection Agency; EPA-440976023.

  21. EPA. (1986). Ambient water quality criteria for bacteria. Washington, DC: U. S. Environmental Protection Agency. EPA A440/5-84-002.

  22. EPA. (2002). Method 1103.1: Escherichia coli (E. coli) in water by membrane filtration using membrane-thermotolerant Escherichia coli agar (mTEC). Office of Water, U.S. Environmental Protection Agency.

  23. Feng, Z., Reniers, A., Haus, B. K., Solo-Gabriele, H. M., Wang, J. D., & Fleming, L. E. (2015). A predictive model for microbial counts on beaches where intertidal sand is the primary source. Marine Pollution Bulletin, 94(1), 37–47.

    CAS  Article  Google Scholar 

  24. Francy, D. S., Darner, R. A., & Bertke, E. E. (2006). Models for predicting recreational water quality at Lake Erie beaches. Reston, VA: U.S. Geological Survey.

    Google Scholar 

  25. Francy, D. S., Stelzer, E. A., Duris, J. W., Brady, A. M., Harrison, J. H., Johnson, H. E., & Ware, M. W. (2013). Predictive models for Escherichia coli concentrations at inland lake beaches and relationship of model variables to pathogen detection. Applied and Environmental Microbiology, 79(5), 1676–1688.

    CAS  Article  Google Scholar 

  26. Frick, W. E., Ge, Z., & Zepp, R. G. (2008). Nowcasting and forecasting concentrations of biological contaminants at beaches: a feasibility and case study. Environmental Science & Technology, 42(13), 4818–4824.

    CAS  Article  Google Scholar 

  27. Ge, Z., & Frick, W. E. (2007). Some statistical issues related to multiple linear regression modeling of beach bacteria concentrations. Environmental Research, 103(3), 358–364.

    CAS  Article  Google Scholar 

  28. Ge, Z., Nevers, M. B., Schwab, D. J., & Whitman, R. L. (2010). Coastal loading and transport of Escherichia coli at an embayed beach in Lake Michigan. Environmental Science & Technology, 44(17), 6731–6737.

    CAS  Article  Google Scholar 

  29. Ge, Z., Whitman, R. L., Nevers, M. B., Phanikumar, M. S., & Byappanahalli, M. N. (2012). Nearshore hydrodynamics as loading and forcing factors for Escherichia coli contamination at an embayed beach. Limnology and Oceanography, 57(1), 362–381.

    Article  Google Scholar 

  30. Genthner, F. J., James, J. B., Yates, D. F., & Friedman, S. D. (2005). Use of composite data sets for source-tracking enterococci in the water column and shoreline interstitial waters on Pensacola Beach, Florida. Marine Pollution Bulletin, 50(7), 724–732.

    CAS  Article  Google Scholar 

  31. Gonzalez, R. A., Conn, K. E., Crosswell, J. R., & Noble, R. T. (2012). Application of empirical predictive modeling using conventional and alternative fecal indicator bacteria in eastern North Carolina waters. Water Research, 46(18), 5871–5882.

    CAS  Article  Google Scholar 

  32. Green, H. C., Dick, L. K., Gilpin, B., Samadpour, M., & Field, K. G. (2012). Genetic markers for rapid PCR-based identification of gull, Canada goose, duck, and chicken fecal contamination in water. Applied and Environmental Microbiology, 78(2), 503–510.

    CAS  Article  Google Scholar 

  33. Guber, A. K., Pachepsky, Y. A., Shelton, D. R., & Yu, O. (2007). Effect of bovine manure on fecal coliform attachment to soil and soil particles of different sizes. Applied and Environmental Microbiology, 73(10), 3363–3370.

    CAS  Article  Google Scholar 

  34. Haack, S. K., Fogarty, L. R., Stelzer, E. A., Fuller, L. M., Brennan, A. K., Isaacs, N. M., & Johnson, H. E. (2013). Geographic setting influences Great Lakes beach microbiological water quality. Environmental Science & Technology, 47(21), 12054–12063.

    CAS  Article  Google Scholar 

  35. Hamilton, D. P., McBride, C.G., Jones H.F.E (2014). Assessing the effects of alum dosing of two inflows to Lake Rotorua against external nutrient load reductions: model simulations for 2001–2012. Environmental Research Institute Report 49, University of Waikato, Hamilton, 56 pp.

  36. Hartmann, J., Beckerman, S., Engeman, R. M., & Seamans, T. (2013). Report to the City of Chicago on Conflicts with Ring-billed Gulls and the 2012 Integrated Ring-billed Gull Damage Management Project.

  37. Hernandez, R. J., Hernandez, Y., Jimenez, N. H., Piggot, A. M., Klaus, J. S., Feng, Z., Reniers, A., & Solo-Gabriele, H. M. (2014). Effects of full-scale beach renovation on fecal indicator levels in shoreline sand and water. Water Research, 48, 579–591.

    CAS  Article  Google Scholar 

  38. Hickey, C. W., & Gibbs, M. M. (2009). Lake sediment phosphorus release management—decision support and risk assessment framework. New Zealand Journal of Marine and Freshwater Research, 43(3), 819–856.

    CAS  Article  Google Scholar 

  39. Hipsey, M. R., Brookes, J. D., Regel, R. H., Antenucci, J. P., & Burch, M. D. (2006). In situ evidence for the association of total coliforms and Escherichia coli with suspended inorganic particles in an Australian reservoir. Water, Air, and Soil Pollution, 170(1–4), 191–209.

    CAS  Article  Google Scholar 

  40. Hong, H., Qiu, J., & Liang, Y. (2010). Environmental factors influencing the distribution of total and fecal coliform bacteria in six water storage reservoirs in the Pearl River Delta Region, China. Journal of Environmental Sciences, 22(5), 663–668.

    Article  Google Scholar 

  41. Ishii, S., Nakamura, T., Ozawa, S., Kobayashi, A., Sano, D., & Okabe, S. (2014). Water quality monitoring and risk assessment by simultaneous multipathogen quantification. Environmental Science & Technology, 48(9), 4744–4749.

    CAS  Article  Google Scholar 

  42. Jeng, H. C., England, A. J., & Bradford, H. B. (2005). Indicator organisms associated with stormwater suspended particles and estuarine sediment. Journal of Environmental Science and Health, 40(4), 779–791.

    CAS  Article  Google Scholar 

  43. Juhna, T., Birzniece, D., & Rubulis, J. (2007). Effect of phosphorus on survival of Escherichia coli in drinking water biofilms. Applied and Environmental Microbiology, 73(11), 3755–3758.

    CAS  Article  Google Scholar 

  44. Kannel, P. R., Lee, S., Lee, Y.-S., Kanel, S. R., & Khan, S. P. (2007). Application of water quality indices and dissolved oxygen as indicators for river water classification and urban impact assessment. Environmental Monitoring and Assessment, 132(1–3), 93–110.

    CAS  Article  Google Scholar 

  45. Kay, D., Stapleton, C., Wyer, M., McDonald, A., Crowther, J., Paul, N., Jones, K., Francis, C., Watkins, J., & Wilkinson, J. (2005). Decay of intestinal enterococci concentrations in high-energy estuarine and coastal waters: towards real-time T 90 values for modelling faecal indicators in recreational waters. Water Research, 39(4), 655–667.

    CAS  Article  Google Scholar 

  46. Liu, L., Phanikumar, M. S., Molloy, S. L., Whitman, R. L., Shively, D. A., Nevers, M. B., Schwab, D. J., & Rose, J. B. (2006). Modeling the transport and inactivation of E. coli and enterococci in the near-shore region of Lake Michigan. Environmental Science & Technology, 40(16), 5022–5028.

    CAS  Article  Google Scholar 

  47. Marshall, K. C. (1971). Sorptive interactions between soil particles and microorganisms. In A. D. McLaren & J. Skujins (Eds.), Soil biochemistry (pp. 409–445). New York: Marcel Dekker.

    Google Scholar 

  48. McCarthy, D., Deletic, A., Mitchell, V., & Diaper, C. (2011). Development and testing of a model for Micro-Organism Prediction in Urban Stormwater (MOPUS). Journal of Hydrology, 409(1), 236–247.

    Article  Google Scholar 

  49. McCarthy, D., Hathaway, J., Hunt, W., & Deletic, A. (2012). Intra-event variability of Escherichia coli and total suspended solids in urban stormwater runoff. Water Research, 46(20), 6661–6670.

    CAS  Article  Google Scholar 

  50. MfE & MoH. (2003). Microbiological water quality guidelines for marine and freshwater recreational areas. Wellington, New Zealand, Ministry for the Environment and Ministry of Health. 159 p.

  51. Nevers, M. B., & Whitman, R. L. (2005). Nowcast modeling of Escherichia coli concentrations at multiple urban beaches of southern Lake Michigan. Water Research, 39(20), 5250–5260.

    CAS  Article  Google Scholar 

  52. Nevers, M. B., & Whitman, R. L. (2011). Efficacy of monitoring and empirical predictive modeling at improving public health protection at Chicago beaches. Water Research, 45(4), 1659–1668.

    CAS  Article  Google Scholar 

  53. NPS. (2014). Human health for recreation, New Zealand National Policy Statement for Freshwater Management 34pp. Available at http://www.mfe.govt.nz/sites/default/files/media/Fresh%20water/nps-freshwater-management-jul-14.pdf

  54. Olyphant, G. A. (2005). Statistical basis for predicting the need for bacterially induced beach closures: emergence of a paradigm? Water Research, 39(20), 4953–4960.

    CAS  Article  Google Scholar 

  55. Olyphant, G. A., & Whitman, R. L. (2004). Elements of a predictive model for determining beach closures on a real time basis: the case of 63rd Street Beach Chicago. Environmental Monitoring and Assessment, 98(1–3), 175–190.

    Article  Google Scholar 

  56. Peryer-Fursdon, J., Abell, J. M., Clarke, D., Özkundakci, D., Hamilton, D. P., & Pearson, L. (2015). Spatial variability in sediment phosphorus characteristics along a hydrological gradient upstream of Lake Rotorua, New Zealand. Environmental Earth Sciences, 73(4), 1573–1585.

    CAS  Article  Google Scholar 

  57. Rippy, M., Franks, P., Feddersen, F., Guza, R., & Warrick, J. (2013). Beach nourishment impacts on bacteriological water quality and phytoplankton bloom dynamics. Environmental Science & Technology, 47(12), 6146–6154.

    CAS  Google Scholar 

  58. Rutherford, J.C., Tait, A., Palliser, C. C., Wadha, S. & Rucinski, D., (2008). Water balance modelling in the Lake Rotorua catchment. NIWA Client Report HAM2008-048, National Institute of Water and Atmospheric Research Ltd, Hamilton.

  59. Schoen, M. E., & Ashbolt, N. J. (2010). Assessing pathogen risk to swimmers at non-sewage impacted recreational beaches. Environmental Science & Technology, 44(7), 2286–2291.

    CAS  Article  Google Scholar 

  60. Shelton, D., Pachepsky, Y., Kiefer, L., Blaustein, R., McCarty, G., & Dao, T. (2014). Response of coliform populations in streambed sediment and water column to changes in nutrient concentrations in water. Water Research, 59, 316–324.

    CAS  Article  Google Scholar 

  61. Shen, H. W., Julien, P. Y., & Maidment, D. (1992). Erosion and sediment transport. Handbook of hydrology, 12.11-12.61.

  62. Shibata, T., Solo-Gabriele, H. M., Sinigalliano, C. D., Gidley, M. L., Plano, L. R., Fleisher, J. M., Wang, J. D., Elmir, S. M., He, G., & Wright, M. E. (2010). Evaluation of conventional and alternative monitoring methods for a recreational marine beach with nonpoint source of fecal contamination. Environmental Science & Technology, 44(21), 8175–8181.

    CAS  Article  Google Scholar 

  63. Sinton, L. W., Hall, C. H., Lynch, P. A., & Davies-Colley, R. J. (2002). Sunlight inactivation of fecal indicator bacteria and bacteriophages from waste stabilization pond effluent in fresh and saline waters. Applied and Environmental Microbiology, 68(3), 1122–1131.

    CAS  Article  Google Scholar 

  64. Soller, J. A., Schoen, M. E., Bartrand, T., Ravenscroft, J. E., & Ashbolt, N. J. (2010). Estimated human health risks from exposure to recreational waters impacted by human and non-human sources of faecal contamination. Water Research, 44(16), 4674–4691.

    CAS  Article  Google Scholar 

  65. Soller, J. A., Schoen, M. E., Varghese, A., Ichida, A. M., Boehm, A. B., Eftim, S., Ashbolt, N. J., & Ravenscroft, J. E. (2014). Human health risk implications of multiple sources of faecal indicator bacteria in a recreational waterbody. Water Research, 66, 254–264.

    CAS  Article  Google Scholar 

  66. Søndergaard, M., Jensen, J. P., & Jeppesen, E. (2003). Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia, 506(1–3), 135–145.

    Article  Google Scholar 

  67. Stapleton, C., Crowther, J., Falconer, R., Francis, C., Humphrey, N., Kashefipour, S., Kay, D., Lin, B., Paul, N., & Watkins, J. (2004). Modelling the fate and transport of particles in water (Phase II). Bristol, Environment Agency: 232p.

  68. Sun, C.-C., Wang, Y.-S., Wu, M.-L., Dong, J.-D., Wang, Y.-T., Sun, F.-L., & Zhang, Y.-Y. (2011). Seasonal variation of water quality and phytoplankton response patterns in Daya Bay, China. International Journal of Environmental Research and Public Health, 8(7), 2951–2966.

    CAS  Article  Google Scholar 

  69. Thoe, W., Gold, M., Griesbach, A., Grimmer, M., Taggart, M., & Boehm, A. (2014). Predicting water quality at Santa Monica Beach: evaluation of five different models for public notification of unsafe swimming conditions. Water Research, 67, 105–117.

    CAS  Article  Google Scholar 

  70. Trolle, D., Jørgensen, T. B., & Jeppesen, E. (2008). Predicting the effects of reduced external nitrogen loading on the nitrogen dynamics and ecological state of deep Lake Ravn, Denmark, using the DYRESM–CAEDYM model. Limnologica-Ecology and Management of Inland Waters, 38(3), 220–232.

    CAS  Article  Google Scholar 

  71. Wade, T. J., Pai, N., Eisenberg, J., & Colford, J. (2003). Do US EPA water quality guidelines for recreational waters prevent gastrointestinal illness? A systematic review and metaanalysis. Environ. Health Perspect, 111(8).

  72. Whitman, R. L., & Nevers, M. B. (2008). Summer E. coli patterns and responses along 23 Chicago beaches. Environmental Science & Technology, 42(24), 9217–9224.

    CAS  Article  Google Scholar 

  73. Whitman, R. L., Nevers, M. B., Korinek, G. C., & Byappanahalli, M. N. (2004). Solar and temporal effects on Escherichia coli concentration at a Lake Michigan swimming beach. Applied and Environmental Microbiology, 70(7), 4276–4285.

  74. Wilkinson, J., Jenkins, A., Wyer, M., & Kay, D. (1995). Modelling faecal coliform dynamics in streams and rivers. Water Research, 29(3), 847–855.

    CAS  Article  Google Scholar 

  75. Zhang, Z., Deng, Z., & Rusch, K. A. (2012). Development of predictive models for determining enterococci levels at Gulf Coast beaches. Water Research, 46(2), 465–474.

    CAS  Article  Google Scholar 

  76. Zmirou, D., Pena, L., Ledrans, M., & Letertre, A. (2003). Risks associated with the microbiological quality of bodies of fresh and marine water used for recreational purposes: summary estimates based on published epidemiological studies. Archives of Environmental Health: An International Journal, 58(11), 703–711.

    Article  Google Scholar 

Download references

Acknowledgments

The corresponding author’s post-doctoral study was supported by a University of Waikato Deputy Vice-Chancellor Freshwater Initiative. Support for this research by the Bay of Plenty Regional Council is gratefully acknowledged. Thanks to Chris McBride and Dr Jonathan Abell for providing the DYCD forcing file for years 2001–2012 and 2007–2014, respectively. Thanks to Dr Jonathan Abell for reading through the manuscript. An abstract of the manuscript was presented at the New Zealand Association Water Conference - Silverstream, Wellington (23–26 November 2015) with travel fund support provided by the University of Waikato.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ayokunle Christopher Dada.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 20.1 kb)

ESM 2

(DOCX 111 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dada, A.C., Hamilton, D.P. Predictive Models for Determination of E. coli Concentrations at Inland Recreational Beaches. Water Air Soil Pollut 227, 347 (2016). https://doi.org/10.1007/s11270-016-3033-6

Download citation

Keywords

  • Beach advisory
  • Water quality
  • Indicator bacteria
  • Water quality model
  • Inland beaches
  • Lake inflows