Skip to main content

Advertisement

Log in

Projecting In-stream Dissolved Organic Carbon and Total Mercury Concentrations in Small Watersheds Following Forest Growth and Clearcutting

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Forest is an important vegetation type on the globe, and clearcutting is the main forest management method. This paper presents a process-based model developed to project the impact of forest growth and clearcutting on dissolved organic carbon (DOC) and total mercury (THg) export from forest-dominated watersheds over two forest-growing cycles. The modelling of THg is based on the observation that THg export from terrestrial to aquatic ecosystems occurs with the binding and subsequent in-stream transport of THg by DOC. From the results generated with the integrated model, DOC and THg export follows two main trends; (i) a multiple-year trend, associated with forest harvesting and re-growth patterns over the lifetime of the forest, and (ii) an annual trend, associated with the seasonal dynamics in forest litter production and decomposition. During a forest rotation, DOC and THg concentration decreases following clearcutting, reaches a minimum at about 15 years after forest regeneration and then gradually increases with forest ageing. Large debris pools left on site following clearcutting can provide a significant pulse in DOC production and within-watershed THg export during the first 2–3 years after harvest. In a single year, the integrated model predicts that DOC- and THg-concentration peaks after leaf fall in autumn, decreases to a minimum in April, increases to another maximum in June and finally decreases to a second minimum just before leaf fall. This seasonal cycle is repeated every year. Conifer species and wetland-dominated watersheds are anticipated to release a greater amount of DOC and THg to aquatic ecosystems than deciduous and dryland-dominated watersheds. The long-term and seasonal DOC production is consistent with field measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aber, J. D., Botkin, D. B., & Melillo, J. M. (1978). Predicting the effects of different harvesting regimes on forest floor dynamics in northern hardwoods. Canadian Journal of Forest Research, 8, 306–315.

    Article  Google Scholar 

  • Allan, C. J., & Heyes, A. (1998). A preliminary assessment of wet deposition and episodic transport of total and methyl mercury from low order Blue Ridge watersheds S.E. USA. Water, Air, and Soil Pollution, 105, 573–592.

    Article  CAS  Google Scholar 

  • Allan, C. J., Heyes, A., Roulet, N. T., Louis, V. L. S. T., & Rudd, J. W. M. (2001). Spatial and temporal dynamics of mercury in Precambrian Shield upland runoff. Biogeochem., 52, 13–40.

    Article  CAS  Google Scholar 

  • Allen, Y., Clair, T.A., Freedman, B., Maass, W., Springer, T. 1992. Hydrogeochemistry and biophysical status of the Pine Marten Brook study area, Kejimkujik National Park: a preliminary description. WRD-AR-MEB-92-181. Environment Canada. pp. 1–34.

  • Ambrose, R. B., Tsiros, I. X., & Wool, T. A. (2005). Modeling mercury fluxes and concentrations in a Georgia watershed receiving atmospheric deposition load from direct and indirect sources. Journal of the Air and Waste Management Association, 55, 547–558.

    Article  CAS  Google Scholar 

  • Arnold, J. G., Williams, J. R., Srinivasan, R., King, K. W., & Griggs, R. H. (1994). SWAT: soil water assessment tool. Temple, TX: U.S.D.A., Agricultural Research Service, Grassland, Soil and Water Research Laboratory.

    Google Scholar 

  • Balland, V. 2003. Hydrogeologic modelling of the flow of cations and anions in select watersheds of eastern Canada with special focus on snowpack effects, M.Sc.F. thesis, University of New Brunswick, p. 175.

  • Bishop, K., Lee, Y.-H., Petterson, C., & Allard, B. (1995). Terrestrial sources of methyl mercury in surface waters the importance of the riparian zone on the Svartberget catchment. Water, Air, and Soil Pollution, 80, 435–444.

    Article  CAS  Google Scholar 

  • Branfireun, B. A., Heyes, A., & Roulet, N. T. (1996). The hydrology and methyl mercury dynamics of a Precambrian Shield headwater peatland. Water Resources Research, 32, 1785–1794.

    Article  CAS  Google Scholar 

  • Bullock, O. R., & Brehme, K. A. (2002). Atmospheric mercury simulation using the CMAQ model: formulation description and analysis of wet deposition results. Atmospheric Environment, 36, 2135–2146.

    Article  CAS  Google Scholar 

  • Canadian Council of Ministers of the Environment. (2003). Canadian water quality guidelines for the protection of aquatic life: inorganic mercury and methyl mercury. Winnipeg: Canadian Council of Ministers of the Environment.

    Google Scholar 

  • Covington, W. W. (1981). Changes in forest floor organic matter and nutrient content following clearcutting in northern hardwoods. Ecology, 62, 41–48.

    Article  Google Scholar 

  • Currie, W. S., & Aber, J. D. (1997). Modelling leaching as a decomposition process in humid Montane forests. Ecology, 78, 1844–1860.

    Article  Google Scholar 

  • Dennis, I. F., Clair, T. A., Driscoll, C. T., Kamman, N., Chalmers, A., Shanley, J., Norton, S. A., & Kahl, S. (2005). Distribution patterns of mercury in lakes and rivers of northeastern North America. Ecotoxicology, 14, 113–123.

    Article  CAS  Google Scholar 

  • Driscoll, C. T., Han, Y. J., Chen, C. Y., Evers, D. C., Lambert, K. F., Holsen, T. M., Kamman, N. C., & Munson, R. K. (2007). Mercury contamination in forest and freshwater ecosystems in the northeastern United States. BioScience, 57, 17–28.

    Article  Google Scholar 

  • Eastern Ecological Services Ltd. (1976). Kejimkujik National Park Resources atlas and base description. Halifax, NS: Eastern Ecological Services Ltd., Report on file with Parks Canada.

    Google Scholar 

  • Eklöf, K., Kraus, A., Futter, M., Schelker, J., Meili, M., Boyer, E. W., & Bishop, K. (2015). Parsimonious model for simulating total mercury and methylmercury in boreal streams based on riparian flow paths and seasonality. Environmental Science & Technology, 49, 7851–7859.

    Article  Google Scholar 

  • Evers, D. C., & Clair, T. A. (2005). Mercury in northeastern North America: a synthesis of existing databases. Ecotoxicology, 14, 7–14.

    Article  CAS  Google Scholar 

  • Evers, D. C., Han, Y., Driscoll, C. T., Kamman, N. C., Goodale, M. W., Lambert, K. F., Holsen, T. M., Chen, C., Clair, T. A., & Butler, T. (2007). Biological mercury hotspots in the northeastern United States and southeastern Canada. BioScience, 57, 29–43.

    Article  Google Scholar 

  • Fiedler, S., & Kalbitz, K. (2003). Concentrations and properties of dissolved organic matter in forest soils as affected by the redox regime. Soil Science, 168, 793–801.

    Article  CAS  Google Scholar 

  • Futter, M. N., Poste, A. E., Butterfield, D., Dillon, P. J., Whitehead, P. G., Dastoor, A. P., & Lean, D. R. S. (2012). Using the INCA-Hg model of mercury cycling to simulate total and methyl mercury concentrations in forest streams and catchments. The Science of the Total Environment, 424, 219–231.

    Article  CAS  Google Scholar 

  • Garcia, E., Carignan, R., & Lean, D. R. (2007). Seasonal and inter-annual variations in methyl mercury concentrations in zooplankton from boreal lakes impacted by deforestation or natural forest fires. Environmental Monitoring and Assessment, 131, 1–11.

    Article  CAS  Google Scholar 

  • Hope, B. (2005). A mass budget for mercury in the Willamette river basin, Oregon, USA. Water, Air, and Soil Pollution, 161, 365–382.

    Article  CAS  Google Scholar 

  • Iverfeldt, A. (1991). Occurrence and turnover of atmospheric mercury over the Nordic countries. Water, Air, and Soil Pollution, 56, 251–65.

    Article  CAS  Google Scholar 

  • James B. Shanley, Driscoll, C.T., Jr., Aiken, G. R., Chalmers, A., Towse, J., & Dittman, J. 2006. Mercury and methyl mercury export in relation to DOC quality in upland landscapes, northeastern USA. http://www.hubbardbrook.org/research/hydrology/shanley06.htm

  • Kamman, N. C., Lorey, P. M., Driscoll, C. T., Estabrook, R., Major, A., Pientka, B., & Glassford, E. (2004). Assessment of mercury in waters, sediments and biota of New Hampshire and Vermont lakes sampled using a geographically randomized design. Environmental Toxicology and Chemistry, 23, 1172–86.

    Article  CAS  Google Scholar 

  • Keenan, R. J., & Kimmins, J. P. (1993). The ecological effects of clear-cutting. Environmental Reviews, 1(2), 121–144. doi:10.1139/a93-010.

    Article  Google Scholar 

  • Krabbenhoft, D. P., Benoit, J. M., Babiarz, C. L., Hurley, J. P., & Andren, A. W. (1995). Mercury cycling in the Allequash Creek Watershed, Northern Wisconsin. Water, Air, and Soil Pollution, 80, 425–433.

    Article  CAS  Google Scholar 

  • Lindberg, S. E., Kim, K. H., Meyers, T. P., & Owens, J. G. (1995). A micrometeorological gradient approach for quantifying air/surface exchange of mercury vapor: tests over contaminated soils. Environmental Science and Technology, 29, 126–135.

    Article  CAS  Google Scholar 

  • Löfgren, S., Ring, E., von Brömssen, C., Sørensen, R., & Högbom, L. (2009). Short-term effects of clear-cutting on the water chemistry of two boreal streams in northern Sweden: a paired catchment study. A Journal of the Human Environment, 38(7), 347–356.

    Article  Google Scholar 

  • Mason, R. P., Fitzgerald, W. F., & Vandal, G. V. (1991). The sources and composition of mercury in ocean precipitation. Journal of Atmospheric Chemistry, 14, 489–500.

    Article  Google Scholar 

  • Meng, F., Bourque, C. P. A., Jewett, K., Daugharty, D., & Arp, P. A. (1995). The Nashwaak experimental watershed project: analyzing effects of clearcutting on soil temperature, soil moisture, snowpack, snowmelt and streamflow. Water, Air, and Soil Pollution, 82, 363–374.

    Article  CAS  Google Scholar 

  • Meng, F. R., Castonguay, M., Ogilive, J., Murphy, P., & Arp, P. A. (2004). Developing a GIS based flow-channel and wet area mapping framework for precision forestry planning. In Proceedings for IUFRO Precision Forestry Symposium 2006 (pp. 46–56).

    Google Scholar 

  • Meng, F., Arp, P., Sangster, A., Brun, G. L., Rencz, A. N., Hall, G. E., Holmes, J., Lean, D. R. S., & Clair, T. A. (2005). Modelling dissolved organic carbon, total and methyl mercury in Kejimkujik freshwaters. In N. J. O’Driscoll, A. N. Rencz, & D. R. S. Lean (Eds.), Mercury cycling in a wetland dominated ecosystem: a multidisciplinary study (pp. 267–284). Pensacola, FL: Society of Environmental Toxicology and Chemistry (SETAC).

    Google Scholar 

  • Mierle, G., & Ingram, R. (1991). The role of humic substances in the mobilization of mercury from watersheds. Water, Air, and Soil Pollution, 56, 309–317.

    Article  Google Scholar 

  • Ministry of Forests and Range. 2008. Glossary of forestry terms in British Columbia. https://www.for.gov.bc.ca/hfd/library/documents/glossary/Glossary.pdf

  • ModelMaker. 1999. Cherwell Scientific Ltd. Oxford. UK. http://www.ModelKinetix.com.

  • Müller, M., Alewell, C., & Hagedorn, F. (2009). Effective retention of litter-derived dissolved organic carbon in organic layers. Soil Biology and Biochemistry, 41, 1066–1074.

    Article  Google Scholar 

  • Northeast States for Coordinated Air Use Management (NESCAUM). 2003. Mercury Emissions from Coal-Fired Plants. Report 031104. Boston, MA, pp. 4–8.

  • Pan, Y., Birdsey, R. A., Phillips, O. L., & Jackson, R. B. (2013). The structure, distribution, and biomass of the World’s forests. Annual Review of Ecology, Evolution, and Systematics, 44, 593–62. doi:10.1146/annurev-ecolsys-110512-135914.

    Article  Google Scholar 

  • Peichl, M., Moore, T. R., Arain, M. A., Dalva, M., Brodkey, D., & McLaren, J. (2007). Concentrations and fluxes of dissolved organic carbon in an age-sequence of white pine forests in Southern Ontario, Canada. Biogeochemistry, 86, 1–17.

    Article  CAS  Google Scholar 

  • Rea, A. W., Keeler, G. J., & Scherbatskoy, T. (1996). The deposition of mercury in throughfall and litterfall in the Iake Champlain watershed—a short-term study. Atmospheric Environment, 30, 3257–3263.

    Article  CAS  Google Scholar 

  • Rea, A. W., Lindberg, S. E., & Keeler, G. (2001). Dry deposition and foliar leaching of mercury and selected trace elements in deciduous forest throughfall. Atmospheric Environment, 35, 3453–3462.

    Article  CAS  Google Scholar 

  • Reddy, M.M., Aiken, G.R., Schuster, P.F. 2007. Mercury-dissolved organic carbon interactions in the Florida everglades: a field and laboratory investigation. (141H http://sofia.usgs.gov/projects/merc_carbon/merccarbonabsfrsf.html).

  • Rencz, A. N., O’Driscoll, N. J., Hall, G. E. M., Peron, T., Telmer, K., & Burgess, N. M. (2003). Spatial variation and correlations of mercury levels in the terrestrial and aquatic omponents of a wetland dominated ecosystem: Kejimkujik Park, NS, Canada. Water, Air, and Soil Pollution, 143, 271–288.

    Article  CAS  Google Scholar 

  • Ritchie, C. D., Richards, W., & Arp, P. A. (2006). Mercury in fog on the Bay of Fundy (Canada). Atmospheric Environment, 40, 6321–6328.

    Article  CAS  Google Scholar 

  • Schnoor, J. L. (1996). Environmental modeling: fate and transport of pollutants in water, air, and soil (p. 682). New York, USA: Wiley.

    Google Scholar 

  • Shanley, J. B., Kamman, N. C., Clair, T. A., & Chalmers, A. (2005). Physical controls on total and methylmercury concentrations in streams and lakes of the northeastern USA. Ecotoxicology, 14, 125–134.

    Article  CAS  Google Scholar 

  • STELLA™, 1998. High performance systems, Inc. Hanover, NH, U.S.A. (42Hhttp://www.iseesystems.com)

  • Townsend, P. 2008. Forest biomass of living, merchantable trees in Nova Scotia. Nova Scotia Department of Natural Resources. Report FOR 2008-9, p. 17.

  • Trofymow, J.A., the CIDET Working Group, 1998. The Canadian Inter-site Decomposition Experiment (CIDET): project and site establishment report. BC-X-378, -126, Pacific Forestry Centre Victoria, British Columbia, p. 126

  • US Environmental Protection Agency. 1997. Mercury study report to congress. Volume iii: fate and transport of mercury in the environment. ((http://www.epa.gov/ttn/atw/112nmerc/volume3.pdf).

  • Vaidya, O. C., & Howell, G. D. (2002). Interpretation of mercury concentrations in eight headwater lakes in Kejimkujik National Park (Nova Scotia, Canada) by use of a geographic information system and statistical techniques. Water, Air, and Soil Pollution, 134, 165–188.

    Article  CAS  Google Scholar 

  • Watras, C. J., & Huckabee, J. W. (1994). Mercury pollution: integration and synthesis (p. 727). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Watras, C. J., Back, R. C., Halvorsen, S., Hudson, R. J. M., Morrison, K. A., & Wente, S. P. (1998). Bioaccumulation of mercury in pelagic freshwater food webs. Science of the Total Environment, 219, 183–208.

    Article  CAS  Google Scholar 

  • Zhang, C., Meng, F.-R., Trofymow, J. A., & Arp, P. A. (2007). Modelling mass and nitrogen remaining in litterbags for Canadian forest and climate conditions. Canadian Journal of Soil Science, 87, 413–432.

    Article  CAS  Google Scholar 

  • Zhang, C., Trofymow, J. A., Jamieson, R. C., Meng, F.-R., Gordon, R. J., & Bourque, C. P.-A. (2010). Litter decomposition and nitrogen mineralization from an annual to a monthly model. Ecological Modelling, 221, 1944–1953.

    Article  CAS  Google Scholar 

  • Zhang, C., Jamieson, R. C., Meng, F.-R., Gordon, R. J., Bhatti, J., & Bourque, C. P.-A. (2011). Long-term forest-floor litter dynamics in Canada’s boreal forest: comparison of two model formulations. Ecological Modelling, 222, 1236–1244.

    Article  CAS  Google Scholar 

  • Zhang, C., Jamieson, R. C., Meng, F.-R., Gordon, R. J., & Bourque, C. P.-A. (2013). Simulation of monthly dissolved organic carbon concentrations in small forested watersheds. Ecological Modelling, 250, 205–213.

    Article  CAS  Google Scholar 

  • Zhu, Z., Arp, P. A., Mazumder, A., Meng, F.-R., Bourque, C. P.-A., & Foster, N. W. (2003). A forest nutrient cycling and biomass model (ForNBM) based on year-round, monthly weather conditions. Part I: assumption, structure and processing. Ecological Modelling, 169, 347–360.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this research was derived from a Natural Science and Engineering Council of Canada (NSERC) Discovery Grant awarded to Dr. Bourque. I am grateful to the staff of Kejimkujik National Park and Environment Canada for the stream DOC concentrations, hydrometric measurements and weather data used in this study. I also thank P. A. Arp and Z.-X. Zhu for their permission to use ForHyM2 and ForNBM in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengfu Zhang.

Ethics declarations

Conflicts of Interest

None.

Additional information

Highlights

1.DOC and THg concentration decreases following clearcutting, reaches a minimum at about 15 years after forest regeneration and then gradually increases with forest ageing

2.DOC and THg seasonal export is controlled by litter decomposition rate

3.Less well-drained watersheds export more DOC and THg than well-drained watersheds

4.Coniferous forests export more mercury than deciduous forests

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Jamieson, R.C., Meng, FR. et al. Projecting In-stream Dissolved Organic Carbon and Total Mercury Concentrations in Small Watersheds Following Forest Growth and Clearcutting. Water Air Soil Pollut 227, 323 (2016). https://doi.org/10.1007/s11270-016-3017-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3017-6

Keywords

Navigation