Skip to main content
Log in

Influence of Magnetic Field Frequency Generated by Permanent Magnets in Mixed Culture Used for the Treatment of Effluent Contaminated with Chromium

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study focused on the treatment of effluent contaminated with chromium, being driven by the application of magnetic field studies in living cells and organisms. The objective was to quantify the removal of chromium(VI), total chromium, and total organic carbon (TOC) by applying a magnetic field generated by permanent magnets of neodymium in mixed culture. The resistance of microorganisms was evaluated for 4 h and 17 min against the application of a magnetic field at frequencies of 3, 5, and 10 Hz, which correspond to flow rates of 3.93, 7.07, and 14.92 cm3 s−1 in the system loop, respectively. The initial concentration of Cr(VI) was 100 mg L−1. The magnetic field frequency of 5 Hz showed a higher removal of Cr(VI) (100 %), total chromium (82 %), and TOC (34 %) compared with frequencies of 3 and 10 Hz and the absence of magnetic field exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Amoozegar, M. A., Ghasemi, A., Razavi, M. R., & Naddaf, S. (2007). Evaluation of hexavalent chromium reduction by chromate-resistant moderately halophile, Nesterenkonia sp. strain MF2. Process Biochemistry, 42, 1475–1479.

    Article  CAS  Google Scholar 

  • APHA, AWWA & WEF. (2005). In E. W. Rice, R. B. Baird, A. D. Eaton, & L. S. Clesceri (Eds.), Standard methods for the examination of water & wastewater (21st Edition). Washington, D. C: American Water Works Association; American Public Works Association; Water Environment Federation.

    Google Scholar 

  • Camargo, J. A., Alonso, A., & Salamanca, A. (2005). Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Chemosphere, 58(9), 1255–1267.

    Article  CAS  Google Scholar 

  • Cossarizza, A., Monti, D., Bersani, F., Cantini, M., Cadessi, R., Sacchi, A., & Franceschi, C. (1989). Extremely low frequency pulsed electromagnetic fields increase cell proliferation in lymphocytes from young and aged subjects. Biochemical and Biophysical Research Communication, 160, 692–698.

    Article  CAS  Google Scholar 

  • Costa, M. (1997). Toxicity and carcinogenicity of Cr (VI) in animal models and humans. Critical Reviews Toxicology, 27, 431–442.

    Article  CAS  Google Scholar 

  • Costa, M. (2003). Potential hazards of hexavalent chromate in our drinking water. Toxicology and Applied Pharmacology, 188(1), 1–5.

    Article  CAS  Google Scholar 

  • Crisostomo, C. A. B., Lima, F. A., Dias, R. M., Cardoso, V. L., & De Resende, M. M. (2016). Joint assessment of bioreduction of chromium (VI) and of removals of both total chromium and total organic carbon (TOC) in sequential hybrid bioreactors. Water Air and Soil Pollution, 227(51).

  • Dalcin, M. G., Pirete, M. M., Lemos, D. A., Ribeiro, E. J., Cardoso, V. L., & De Resende, M. M. (2011). Evaluation of hexavalent chromium removal in a continuous biological filter with the use of central composite design (CCD). Journal of Environmental Management, 92, 1165–1173.

    Article  CAS  Google Scholar 

  • Dermou, E., Velissariou, A., Xenos, D., & Vayenas, D. V. (2005). Biological chromium(VI) reduction using a trickling filter. Journal of Hazardous Materials, B126, 78–85.

    Article  Google Scholar 

  • Dhal, B., Thatoi, H. N., Das, N., Pandey, B. D. (2013). Reduction of hexavalent chromium by Bacillus sp. isolated from chromite mine soils and characterization of reduced product. Journal of Chemical Technology and Biotechnology, 85(11), 1471–1479.

  • Dini, L., & Abrro, L. (2005). Bioeffects of moderate intensity static magnetic fields on cell cultures. Micron, 36, 196–217.

    Article  Google Scholar 

  • IARC. (1989). Monograph on chromium, nickel and welding, Vol. 49. Lyon, France: International Agency for Research on Cancer.

    Google Scholar 

  • Ji, Y., Wang, Y., Sun, J., Yan, T., Li, J., Zhao, T., Yin, X., & Sun, C. (2010). Enhancement of biological treatment of wastewater by magnetic field. Bioresource Technology, 101, 8535–8540.

    Article  CAS  Google Scholar 

  • Lebkowska, M., Rutkowska-Narozniak, A., Pajor, E., & Pochanke, Z. (2011). Effect of a static magnetic field on formaldehyde biodegradation in wastewater by activated sludge. Bioresource Technology, 102, 8777–8782.

    Article  CAS  Google Scholar 

  • Leles, D. M. A., Romanielo, L. L., De Resende, M. M., Filho, U. C., Cardoso, V. L., & Lemos, D. A. (2012). Evaluation of the bioremoval of Cr (VI) and TOC in biofilters under continuous operation using response surface methodology. Biodegradation (Dordrecht), 23, 441–454.

    Article  CAS  Google Scholar 

  • Lovely, D. R., & Coates, J. D. (1997). Bioremediation of metal contamination. Current Opinion Biotechnology, 8(1-2), 285–289.

    Article  Google Scholar 

  • Madigan, M. T., Martinko, J. M., & Parker, J. (2004). Microbiologia de Brock. São Paulo: Prentice Hall.

    Google Scholar 

  • Moura, A. A., De, O., Terra, N. M., Da Silva, W. B., Costa, E. J. X., Cardoso, V. L., & De Resende, M. M. (2015). Influence of an electromagnetic field on the bioreduction of chromium (VI) using a mixed culture of microorganisms. Environmental Progress & Sustainable Energy, 34(1), 88–98.

    Article  Google Scholar 

  • Park, C. H., Keyhan, M., Wielinga, B., Fendorf, S., & Matin, A. (2000). Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Applied Environmental Microbiology., 66(5), 1788–1795.

    Article  CAS  Google Scholar 

  • Pei, Q. H., Shahir, S., & Santhana, A. S. (2009). Chromium (VI) resistance and removal by Acinetobacter haemolyticus. World Journal of Microbiology Biotechnology., 25(6), 1085e1093.

    Article  Google Scholar 

  • Poljsak, B., Pocsi, I., Raspor, P., & Pesti, M. (2010). Interference of chromium with biological systems in yeast and fungi: a review. Journal Basic Microbiology, 50(1), 21e36.

    Article  Google Scholar 

  • Puzon, G. J., Roberts, A. G., Kramer, D. M., & Xun, L. (2005). Formation of soluble organochromium (III) complexes after chromate reduction in the presence of cellular organics. Environmental Science Technology, 39(8), 2811e2817.

    Article  Google Scholar 

  • Saffer, J. D., & Phillips, J. L. (1996). Evaluating the biological aspects of in vitro studies in bioelectromagnetics. Bioeletrochemistry and Bioenergetics, 40, 1–7.

    Article  CAS  Google Scholar 

  • Soni, S. K., Singh, R., Awasthi, A., Singh, M., & Kalra, A. (2012). In vitro Cr (VI) reduction by cell-free extracts of chromate-reducing bacteria isolated from tannery effluent irrigated soil. Environmental Science Pollution Research., 20(3), 1661–1674.

    Article  Google Scholar 

  • Thatoi, A., Das, S., Mishra, J., Rath, B. P., & Das, N. (2014). Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. Journal of Environmental Management, 146, 383–399.

    Article  CAS  Google Scholar 

  • Walleczek, J., & Liburdy, R. P. (1990). Nonthermal 60-Hz sinusoidal magnetic field exposure enhances 45Ca++ uptake in rat thymocytes: dependence on mitogen activation. FEBS Letters, 271, 157–160.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Federal University of Uberlândia, Faculty of Chemical Engineering, FAPEMIG, CNPq, and CAPES, Brazil, for facilities and financial support for the execution of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. de Resende.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, R.M., Cardoso, V.L. & de Resende, M.M. Influence of Magnetic Field Frequency Generated by Permanent Magnets in Mixed Culture Used for the Treatment of Effluent Contaminated with Chromium. Water Air Soil Pollut 227, 305 (2016). https://doi.org/10.1007/s11270-016-3010-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3010-0

Keywords

Navigation