Water, Air, & Soil Pollution

, 227:329 | Cite as

Potential for Reducing On-Farm Greenhouse Gas and Ammonia Emissions from Dairy Cows with Prolonged Dietary Tannin Additions

  • Benjamin D. Duval
  • Matias Aguerre
  • Michel Wattiaux
  • Peter A. Vadas
  • J. Mark Powell
Article
  • 362 Downloads

Abstract

Dairy cows are responsible for significant emissions of enteric methane (CH4) and produce nitrous oxide (N2O) and ammonia (NH3) gas from manure. As an abatement strategy, we explored the effects of long-term condensed tannin (Quebracho and chestnut extracts) addition to dairy cow diets. Previous studies have demonstrated that tannins in cow diets reduce methane and ammonia efflux, but none have done so over a >1-month time period. A modified stanchion barn equipped with gas analysis instrumentation measured CH4, N2O, and NH3 fluxes into and from the barn, at the onset of the experiment, and 45 and 90 days after feeding groups of lactating dairy cows a control diet or two levels of tannin extract at 0.45 and 1.8 % of dietary dry matter. Few statistical differences among treatments were observed, likely a consequence of high variability and low sample size necessary for conducting a study of this duration. However, on a per-cow basis, low and high tannin diets lowered CH4 emissions by 56 g cow−1 day−1 and by 48 g cow day−1, respectively. Diet tannin additions lowered CH4 (33 %), NH3 (23 %), and N2O (70 %) per unit milk corrected emissions in the high tannin treatment compared to the control at the end of the experiment, without significant loss in milk production. These results suggest that relatively low concentrations of diet tannin additions can reduce ruminant CH4 and gaseous N emissions from manure. The tannin effect observed after 90 days is a starting point for considering tannin additions as a potential long-term strategy for improving the environmental footprint of milk production.

Keywords

Ammonia Condensed tannin Dairy cows Greenhouse gas flux Methane Nitrous oxide 

Notes

Acknowledgements

The farm staff at USDFRC, Prairie du Sac, Wisconsin was instrumental to the success of the project. We thank Kris Niemann and Alicia Pelletier for field assistance and barn maintenance.

Supplementary material

11270_2016_2997_MOESM1_ESM.xls (45 kb)
Table S1 Calendar of barn greenhouse gas emissions measurements (XLS 45 kb)

References

  1. Aguerre, M. J., Wattiaux, M. A., Powell, J. M., Broderick, G. A., & Arndt, C. (2011). Effect of forage-to-concentrate ratio in dairy cow diets on emission of methane, carbon dioxide, and ammonia, lactation performance, and manure excretion. Journal of Dairy Science, 94, 3081–3093.CrossRefGoogle Scholar
  2. Aguerre, M. J., Wattiaux, M. A., Capozzolo, M. C., Lencioni, P., & Cabral, C. (2010). Effect of quebracho-chestnut tannin extracts at two dietary crude protein levels on nitrogen partitioning in lactating dairy cows. Journal of Dairy Science, 93(E-Suppl. 1). 446 (Abstr.).Google Scholar
  3. Anderson, R. C., Callaway, T. R., Van Kessel, J. A., Jung, Y. S., Edrington, T. S., & Nisbet, D. J. (2003). Effect of select nitro compounds on ruminal fermentation: an initial look at their potential to reduce economic and environmental costs associated with ruminal methanogenesis. Bioresource Technology, 90, 59–63.CrossRefGoogle Scholar
  4. Appuhamy, J. R. N., Strathe, A. B., Jayasundara, S., Wagner-Riddle, C., Dijkstra, J., France, J., & Kebreab, E. (2013). Anti-methanogenic effects of monensin in dairy and beef cattle: a meta-analysis. Journal of Dairy Science, 96(8), 5161–5173.CrossRefGoogle Scholar
  5. Arndt, C., Powell, J. M., Aguerre, M. J., & Wattiaux, M. A. (2015). Performance, digestion, nitrogen balance, and emission of manure ammonia, enteric methane, and carbon dioxide in lactating cows fed diets with varying alfalfa silage-to-corn silage ratios. Journal of Dairy Science, 98(1), 418–430.CrossRefGoogle Scholar
  6. Arriaga, H., Salcedo, G., Martinez-Suller, L., Calsamiglia, S., & Merino, P. (2010). Effect of dietary crude protein modification on ammonia and nitrous oxide concentration on a tie-stall dairy barn floor. Journal of Dairy Science, 93(7), 3158–3165.CrossRefGoogle Scholar
  7. Bhatta, R., Uyeno, Y., Tajima, K., Takenaka, A., Yabumoto, Y., Nonaka, I., Enishi, O., & Kurihara, M. (2009). Difference in nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. Journal of Dairy Science, 92, 5512–5522.CrossRefGoogle Scholar
  8. Bussink, D. W., & Oenema, O. (1998). Ammonia volatilization from dairy farming systems in temperate areas: a review. Nutrient Cycling in Agroecosystems, 51, 19–33.CrossRefGoogle Scholar
  9. Carulla, J. E., Kreuzer, M., Machmuller, A., & Hess, H. D. (2005). Supplementation of Acacia mearnsii tannins decrease methanogenesis and urinary nitrogen in forage fed sheep. Australian Journal of Agricultural Research, 56, 961–970.CrossRefGoogle Scholar
  10. Clark, H., Pinares-Patiño, C. S., & de Klein, C. A. M. (2005). Methane and nitrous oxide emissions from grazed grasslands. In D. A. McGilloway (Ed.), Grassland: A Global Resource (pp. 279–293). Wageningen, Netherlands: Wageningen Academic.Google Scholar
  11. Grainger, C., Clarke, T., Auldist, M. J., Beauchemin, K. A., McGin, S. M., Wagnhorn, G. C., & Eckard, R. J. (2009). Potential use of Acacia mearnsii condensed tannins to reduce methane emissions and nitrogen excretion from grazing dairy cows. Canadian Journal of Animal Science, 89, 241–251.CrossRefGoogle Scholar
  12. Guan, H., Wittenberg, K. M., Ominski, K. H., & Krause, D. O. (2006). Efficacy of ionophores in cattle diets for mitigation of enteric methane. Journal of Animal Science, 84, 1896–1906.CrossRefGoogle Scholar
  13. Hook, S. E., Northwood, K. S., Wright, A. D. G., & McBride, B. W. (2009). Long-term monensin supplementation does not significantly affect the quantity or diversity of methanogens in the rumen of the lactating dairy cow. Applied and Environmental Microbiology, 75, 374–380.CrossRefGoogle Scholar
  14. IPCC. (2007). IPCC Fourth Assessment Report: Climate Change 2007. Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. https://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml. Accessed 7 Aug 2014.Google Scholar
  15. Jayanegara, A., Leiber, F., & Kruezer, M. (2012). Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. Journal of Animal Physiology and Animal Nutrition, 96, 365–375.CrossRefGoogle Scholar
  16. Northern Biogas (2015). Green Bay, Wisconsin, USA. http://Northernbiogas.com. Accessed 11 Jul 2015.
  17. Oenema, O., Wrage, N., Velthof, G. L., van Groenigen, J. W., Dolfing, J., & Kuikman, P. J. (2005). Trends in global nitrous oxide emissions from animal production systems. Nutrient Cycling in Agroecosystems, 72(1), 51–65.CrossRefGoogle Scholar
  18. Pasch, H., & Pizzi, A. (2002). Considerations on the macromolecular structure of chestnut ellagitannins by matrix‐assisted laser desorption/ionization‐time‐of‐flight mass spectrometry. Journal of Applied Polymer Science, 85(2), 429–437.CrossRefGoogle Scholar
  19. Pinder, R. W., Strader, R., Davidson, C. I., & Adams, P. J. (2004). A temporally and spatially resolved ammonia emission inventory for dairy cows in the United States. Atmospheric Environment, 38, 3747–3756.CrossRefGoogle Scholar
  20. Powell, J. M., Cusick, P. R., Misselbrook, T. H., & Holmes, B. J. (2007). Design and calibration of chambers for measuring ammonia emissions from tie-stall dairy barns. Transactions of the ASABE, 49, 1139–1149. http://naldc.nal.usda.gov/download/10896/PDF.Google Scholar
  21. Powell, J. M., Aguerre, M. J., & Wattiaux, M. A. (2011). Tannin extracts abate ammonia emissions from simulated dairy barn floors. Journal of Environmental Quality, 40, 907–914.CrossRefGoogle Scholar
  22. R Development Core Team. (2008). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0, URL http://www.R-project.org.Google Scholar
  23. Robbins, C. T., Hanley, T. A., Hagerman, A. E., Hjeljord, O., Baker, D. L., Schwartz, C. C., & Mautz, W. W. (1987). Role of tannins in defending plants against ruminants: reduction in protein availability. Ecology, 68, 98–107.CrossRefGoogle Scholar
  24. Ryther, J. H., & Dunstan, W. M. (1971). Nitrogen, phosphorus, and eutrophication in the Coastal Marine Environment. Science, 171, 1008–1013.CrossRefGoogle Scholar
  25. SAS Institute Inc. (2013). Cary, NC: SAS Institute Inc.Google Scholar
  26. Singurindy, O., Molodovskaya, M., Richards, B. K., & Steenhuis, T. S. (2009). Nitrous oxide emission at low temperatures from manure-amended soils under corn (Zea mays L.). Agriculture. Ecosystems and Environment, 132, 74–83.CrossRefGoogle Scholar
  27. Smith, A. H., & Mackie, R. I. (2004). Effect of condensed tannins on bacterial diversity and metabolic activity in the rat gastrointestinal tract. Applied and Environmental Microbiology, 70, 1104–1115.CrossRefGoogle Scholar
  28. Staerfl, S. M., Zeitz, J. O., Kreuzer, M., & Soliva, C. R. (2012). Methane conversion rate of bulls fattened on grass or maize silage as compared with the IPCC default values, and the long-term methane mitigation efficiency of adding acacia tannin, garlic, maca and lupine. Agriculture, Ecosystems & Environment, 148, 111–120.CrossRefGoogle Scholar
  29. Tyrrell, H. F., & Reid, J. T. (1965). Prediction of the energy value of cow’s milk. Journal of Dairy Science, 48(9), 1215–1223.CrossRefGoogle Scholar
  30. United Nations. (2013). United Nations Department of Economic and Social Affairs/Population Division World Population Prospects: The 2012 Revision, Volume I: Comprehensive Tables.Google Scholar
  31. U.S. Dairy Export Council (2014). http://USDEC.org. Accessed 18 Jan 2015.
  32. United States Environmental Protection Agency (2012). http://www.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2014-Chapter-6-Agriculture.pdf. Accessed 9 Feb 2015.
  33. van Lingen, H. J., Crompton, L. A., Hendriks, W. H., Reynolds, C. K., & Dijkstra, J. (2014). Meta-analysis of relationships between enteric methane yield and milk fatty acid profile in dairy cattle. Journal of Dairy Science, 97, 7115–7132. doi: 10.3168/jds.2014-8268.CrossRefGoogle Scholar
  34. Weimer, P. J. (1998). Manipulating ruminal fermentation: a microbial ecological perspective. Journal of Animal Science, 76, 3114–3122.CrossRefGoogle Scholar
  35. Woodward, S. I., Waghorn, G. C., Ulyatt, M. J., & Lassey, K. R. (2001). Early indications that feeding Lotus will reduce methane emissions from ruminants. Proceedings of the New Zealand Society of Animal Producers, 61, 23–26.Google Scholar
  36. Woodward, S. L., Waghorn, G. C., & Laboyrie, P. (2004). Condensed tannins in birdsfoot trefoil (Lotus corniculatus) reduced methane emissions from dairy cows. Proceedings of the New Zealand Society of Animal Producers, 64, 160–164.Google Scholar

Copyright information

© Springer International Publishing Switzerland (outside the USA) 2016

Authors and Affiliations

  • Benjamin D. Duval
    • 1
    • 3
  • Matias Aguerre
    • 2
  • Michel Wattiaux
    • 2
  • Peter A. Vadas
    • 1
  • J. Mark Powell
    • 1
  1. 1.United States Department of AgricultureAgricultural Research Service, US Dairy Forage Research CenterMadisonUSA
  2. 2.Department of Dairy ScienceUniversity of WisconsinMadisonUSA
  3. 3.Department of BiologyNew Mexico Institute of Mining and TechnologySocorroUSA

Personalised recommendations