Skip to main content
Log in

Inoculating Bacteria into Polycyclic Aromatic Hydrocarbon-Contaminated Oil Sands Soil by Means of Electrokinetics

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Electrokinetics (EK) is commonly used in bioremediation studies to aid mobilization of amendments in low permeable soils. This study evaluated the possibility of using EK as a delivery mechanism to emplace organic contaminant degrading bacteria, Sphingomonas paucimobilis EPA505 and Mycobacterium vanbaalenii PYR-1, into low permeability soils without disturbing the soils. Bacterial cultures were grown to exponential phase with a polycyclic aromatic hydrocarbon (PAH) carbon source, and then transferred to EK reservoirs. Direct current was applied to induce EK movement, and soil DNA evaluated for the inoculated bacteria. Electroosmotic transport efficacy for a silty and an oil sands soil was compared. Results show that EK can be used to inoculate S. paucimobilis EPA505 into soils under electroosmotic flow, but the hydrophobic nature of soils especially enabled electroosmosis. For the first time, we demonstrate that in situ inoculation of non-native bacterial species using EK is possible. The results of this study demonstrate the potential for future applications of this technique for in situ bioaugmentation and remediation of PAH-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DGGE:

Denaturing gradient gel electrophoresis

EK:

Electrokinetics

ISCO:

In situ chemical oxidation

OD:

Optical density

PAHs:

Polycyclic aromatic hydrocarbons

PCA:

Principle component analysis

PCR:

Polymerase chain reaction

SEM-EDS:

Energy dispersive X-ray spectroscopy scanning electron microscopy

TAE:

Tris base, acetic acid, and EDTA

TGA:

Thermal gravimetric analysis

TNM:

Total number of culturable microorganisms

UPGMA:

Unweighted pair group method using arithmetic averages

XRD:

X-ray powder diffraction

References

  • Brezna, B., Khan, A. A., & Cerniglia, C. E. (2003). Molecular characterization of dioxygenases from polycyclic aromatic hydrocarbon-degrading Mycobacterium spp. FEMS Microbiology Letters, 223(2), 177–183. doi:10.1016/S0378-1097(03)00328-8.

    Article  CAS  Google Scholar 

  • Cameselle, C., & Reddy, K. R. (2013). Effects of periodic electric potential and electrolyte recirculation on electrochemical remediation of contaminant mixtures in clayey soils. Water, Air, & Soil Pollution, 224(8), 1636–10.1007/s11270-013-1636-8.

    Article  Google Scholar 

  • Cerniglia, C. E. (1992). Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 3(2–3), 351–368. doi:10.1007/BF00129093.

    Article  CAS  Google Scholar 

  • Chu, H., Neufeld, J. D., Walker, V. K., & Grogan, P. (2011). The influence of vegetation type on the dominant soil bacteria, archaea, and fungi in a low arctic tundra landscape. Soil Science Society of America Journal, 75(5), 1–10. doi:10.2136/sssaj2011.0057.

    Article  Google Scholar 

  • DeFlaun, M. F., & Condee, C. W. (1997). Electrokinetic transport of bacteria. Journal of Hazardous Materials, 55(1–3), 263–277. doi:10.1016/S0304-3894(97)00023-X.

    Article  CAS  Google Scholar 

  • Gill, R. T., Harbottle, M. J., Smith, J. W. N., & Thornton, S. F. (2014). Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications. Chemosphere, 107, 31–42. doi:10.1016/j.chemosphere.2014.03.019.

    Article  CAS  Google Scholar 

  • Gong, Z., Alef, K., Wilke, B.-M., & Li, P. (2005). Dissolution and removal of PAHs from a contaminated soil using sunflower oil. Chemosphere, 58(3), 291–8. doi:10.1016/j.chemosphere.2004.07.035.

    Article  CAS  Google Scholar 

  • Green, S. J., Leigh, M. B., & Neufeld, J. D. (2010). Denaturing gradient gel electrophoresis (DGGE) for microbial community analysis. In K. N. Timmins (Ed.), Handbook of hydrocarbon and lipid microbiology (pp. 4137–4158). doi:10.1007/978-3-540-77587-4_323.

    Chapter  Google Scholar 

  • Haapea, P., & Tuhkanen, T. (2006). Integrated treatment of PAH contaminated soil by soil washing, ozonation and biological treatment. Journal of Hazardous Materials, B136(2), 244–250. doi:10.1016/j.jhazmat.2005.12.033.

    Article  Google Scholar 

  • Heister, K., Pols, S., Loch, J. P. G., & Bosma, T. N. P. (2013). Desorption behaviour of polycyclic aromatic hydrocarbons after long-term storage of two harbour sludges from the port of Rotterdam, The Netherlands. Journal of Soils and Sediments, 13(6), 1113–1122. doi:10.1007/s11368-013-0689-z.

    Article  CAS  Google Scholar 

  • Heitkamp, M. A., & Cerniglia, C. E. (1988). Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Applied and Environmental Microbiology, 54(6), 1612–1614.

    CAS  Google Scholar 

  • Li, F., Guo, S., & Hartog, N. (2012). Electrokinetics-enhanced biodegradation of heavy polycyclic aromatic hydrocarbons in soil around iron and steel industries. Electrochimica Acta, 85, 228–234. doi:10.1016/j.electacta.2012.08.055.

    Article  CAS  Google Scholar 

  • Lima, A. T., Kleingeld, P. J., Heister, K., & Loch, J. P. G. (2011). Removal of PAHs from contaminated clayey soil by means of electro-osmosis. Separation and Purification Technology, 79(2), 221–229. doi:10.1016/j.seppur.2011.02.021.

    Article  CAS  Google Scholar 

  • Lors, C., Damidot, D., Ponge, J. F., & Périé, F. (2012). Comparison of a bioremediation process of PAHs in a PAH-contaminated soil at field and laboratory scales. Environmental Pollution, 165, 11–17. doi:10.1016/j.envpol.2012.02.004.

    Article  CAS  Google Scholar 

  • Mao, X., Wang, J., Ciblak, A., Cox, E. E., Riis, C., Terkelsen, M., et al. (2012). Electrokinetic-enhanced bioaugmentation for remediation of chlorinated solvents contaminated clay. Journal of hazardous materials, 213–214, 311–7. doi:10.1016/j.jhazmat.2012.02.001.

    Article  Google Scholar 

  • Mueller, J. G., Chapman, P. J., Blattmann, B. O., & Pritchard, P. H. (1990). Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Applied and Environmental Microbiology, 56(4), 1079–1086.

    CAS  Google Scholar 

  • Muyzer, G., De Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59(3), 695–700.

    CAS  Google Scholar 

  • Niqui-Arroyo, J.-L., Bueno-Montes, M., Posada-Baquero, R., & Ortega-Calvo, J.-J. (2006). Electrokinetic enhancement of phenanthrene biodegradation in creosote-polluted clay soil. Environmental Pollution, 142(2), 326–332. doi:10.1016/j.envpol.2005.10.007.

    Article  CAS  Google Scholar 

  • Ortega-Calvo, J. J., Tejeda-Agredano, M. C., Jimenez-Sanchez, C., Congiu, E., Sungthong, R., Niqui-Arroyo, J. L., & Cantos, M. (2013). Is it possible to increase bioavailability but not environmental risk of PAHs in bioremediation? Journal of Hazardous Materials, 261, 733–45. doi:10.1016/j.jhazmat.2013.03.042.

    Article  CAS  Google Scholar 

  • Reddy, K. R. (2010). Technical challenges to in-situ remediation of polluted sites. Geotechnical and Geological Engineering, 28(3), 211–221. doi:10.1007/s10706-008-9235-y.

    Article  Google Scholar 

  • Rezanezhad, F., Couture, R.-M., Kovac, R., O’Connell, D., & Van Cappellen, P. (2014). Water table fluctuations and soil biogeochemistry: an experimental approach using an automated soil column system. Journal of Hydrology, 509, 245–256. doi:10.1016/j.jhydrol.2013.11.036.

    Article  CAS  Google Scholar 

  • Saichek, R. E., & Reddy, K. R. (2003). Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil. Chemosphere, 51(4), 273–287. doi:10.1016/S0045-6535(02)00849-4.

    Article  CAS  Google Scholar 

  • Saichek, R. E., & Reddy, K. R. (2005). Surfactant-enhanced electrokinetic remediation of polycyclic aromatic hydrocarbons in heterogeneous subsurface environments. Journal of Environmental Engineering and Science, 4(5), 327–339. doi:10.1139/s04-064.

    Article  CAS  Google Scholar 

  • Semple, K. T., Doick, K. J., Jones, K. C., Burauel, P., Craven, A., & Harms, H. (2004). Peer reviewed: defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environmental Science & Technology, 38(12), 228A–231A. doi:10.1021/es040548w.

    Article  CAS  Google Scholar 

  • Takamura, K. (1982). Microscopic structure of Athabasca oil sand. The Canadian Journal of Chemical Engineering, 60, 538–545.

    Article  CAS  Google Scholar 

  • Wick, L. Y., Mattle, P. A., Wattiau, P., & Harms, H. (2004). Electrokinetic transport of PAH-degrading bacteria in model aquifers and soil. Environmental Science & Technology, 38(17), 4596–4602. doi:10.1021/es0354420.

    Article  CAS  Google Scholar 

  • Wu, M. Z., Reynolds, D. A., Fourie, A., & Thomas, D. G. (2013). Optimal field approaches for electrokinetic in situ oxidation remediation. Groundwater Monitoring & Remediation, 33(1), 62–74. doi:10.1111/j1745-6592.2012.01410.x.

    Article  CAS  Google Scholar 

  • Ye, D., Siddiqi, M. A., Maccubbin, A. E., Kumar, S., & Sikka, H. C. (1996). Degradation of polynuclear aromatic hydrocarbons by Sphingomonas paucimobilis. Environmental Science & Technology, 30(1), 136–142.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Canada Excellence Research Chair (CERC) Program for providing the funding for this research. We would also like to thank the following people for their technical expertise or contribution through laboratory resources: Radmila Kovac, Dr. Shuhuan Li, Dr. Josh Neufeld, and Dr. Brendan McConkey from the University of Waterloo; Dr. Ondřej Uhlík from the University of Chemistry and Technology, Prague; and Caitlin Marshall and Dr. Nael Yasri from the University of Western Ontario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana T. Lima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Secord, E.L., Kottara, A., Van Cappellen, P. et al. Inoculating Bacteria into Polycyclic Aromatic Hydrocarbon-Contaminated Oil Sands Soil by Means of Electrokinetics. Water Air Soil Pollut 227, 288 (2016). https://doi.org/10.1007/s11270-016-2991-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2991-z

Keywords

Navigation