Skip to main content
Log in

Experimental Investigation of Arsenic (III, V) Removal from Aqueous Solution Using Synthesized α-Fe2O3/MCM-41 Nanocomposite Adsorbent

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Adsorption of arsenic (III, V) from aqueous solution onto the synthesized α-Fe2O3/MCM-41 nanocomposite adsorbent, as function of contact time, initial concentration of the solution, temperature, pH, and presence of other anionic species, has been investigated. Characterization of adsorbent was performed via XRD, FT-IR, TGA, TEM, and N2 adsorption–desorption techniques. The synthesized adsorbent belonged to the group of mesoporous materials with the mean pore diameter of 2.37 nm, specific surface area of 507.5 m2 g−1, and total pore volume of 0.571 cm3 g−1. The experimental data were analyzed by Langmuir, Freundlich, and Dubinin-Radushkevich (D–R) adsorption isotherms. Based on Langmuir isotherm, the maximum adsorption capacities at 298 K in the concentration range of 2–200 ppm were 133.3 and 102.1 mg g−1 for As(ш) and As(v), respectively. The adsorption experiments at different contact times indicated that the kinetics of adsorption accurately followed the pseudo-second-order rate equation. Thermodynamics parameters were calculated, and it was found that the adsorption process was spontaneous, exothermic, and favored at lower temperatures. The capability of regeneration and reusability of adsorbent was also examined in alkaline solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbasizadeh, S., Keshtkar, A. R., & Mousavian, M. A. (2014). Sorption of heavy metal ions from aqueous solution by a novel cast PVA/TiO 2 nanohybrid adsorbent functionalized with amine groups. Journal of Industrial and Engineering Chemistry, 20, 1656–1664.

    Article  CAS  Google Scholar 

  • Akin, I., Arslan, G., Tor, A., Cengeloglu, Y., & Ersoz, M. (2011). Removal of arsenate [As (V)] and arsenite [As (III)] from water by SWHR and BW-30 reverse osmosis. Desalination, 281, 88–92.

    Article  CAS  Google Scholar 

  • Azizian, S. (2004). Kinetic models of sorption: a theoretical analysis. Journal of Colloid and Interface Science, 276, 47–52.

    Article  CAS  Google Scholar 

  • Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society, 73, 373–380.

    Article  CAS  Google Scholar 

  • Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T. W., Olson, D. H., & Sheppard, E. W. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114, 10834–10843.

    Article  CAS  Google Scholar 

  • Boparai, H. K., Joseph, M., & O’carroll, D. M. (2011). Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. Journal of Hazardous Materials, 186, 458–465.

    Article  CAS  Google Scholar 

  • Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319.

    Article  CAS  Google Scholar 

  • Cao, C.-Y., Qu, J., Yan, W.-S., Zhu, J.-F., Wu, Z.-Y., & Song, W.-G. (2012). Low-cost synthesis of flowerlike α-Fe2O3 nanostructures for heavy metal ion removal: adsorption property and mechanism. Langmuir, 28, 4573–4579.

    Article  CAS  Google Scholar 

  • Chen, L., Xin, H., Fang, Y., Zhang, C., Zhang, F., Cao, X., Zhang, C., & Li, X. (2014). Application of metal oxide heterostructures in arsenic removal from contaminated water. Journal of Nanomaterials, 2014, 1–10.

    Google Scholar 

  • Choong, T. S. Y., Chuah, T. G., Robiah, Y., Koay, F. L. G., & Azni, I. (2007). Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination, 217, 139–166.

    Article  CAS  Google Scholar 

  • Freundlich, H. M. F. (1906). Over the adsorption in solution. Journal of Physical Chemistry, 57, e470.

    Google Scholar 

  • Gohari, R. J., Lau, W. J., Matsuura, T., & Ismail, A. F. (2013). Fabrication and characterization of novel PES/Fe-Mn binary oxide UF mixed matrix membrane for adsorptive removal of As (III) from contaminated water solution. Separation and Purification Technology, 118, 64–72.

    Article  Google Scholar 

  • Hankin, A., Alexander, J. C., & Kelsall, G. H. (2014). Constraints to the flat band potential of hematite photo-electrodes. Physical Chemistry Chemical Physics, 16, 16176–16186.

    Article  CAS  Google Scholar 

  • Huo, Q., Margolese, D. I., & Stucky, G. D. (1996). Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chemistry of Materials, 8, 1147–1160.

    Article  CAS  Google Scholar 

  • Idris, S. A., Harvey, S. R., & Gibson, L. T. (2011). Selective extraction of mercury (II) from water samples using mercapto functionalised-MCM-41 and regeneration of the sorbent using microwave digestion. Journal of Hazardous Materials, 193, 171–176.

    Article  CAS  Google Scholar 

  • Issa, N. B., Rajaković-Ognjanović, V. N., Marinković, A. D., & Rajaković, L. V. (2011). Separation and determination of arsenic species in water by selective exchange and hybrid resins. Analytica Chimica Acta, 706, 191–198.

    Article  Google Scholar 

  • Karim, M. D. M. (2000). Arsenic in groundwater and health problems in Bangladesh. Water Research, 34, 304–310.

    Article  CAS  Google Scholar 

  • Kiran, I., Akar, T., Ozcan, A. S., Ozcan, A., & Tunali, S. (2006). Biosorption kinetics and isotherm studies of acid red 57 by dried Cephalosporium aphidicola cells from aqueous solutions. Biochemical Engineering Journal, 31, 197–203.

    Article  CAS  Google Scholar 

  • Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359, 710–712.

    Article  CAS  Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1403.

    Article  CAS  Google Scholar 

  • Liu, C.-H., Chuang, Y.-H., Chen, T.-Y., Tian, Y., Li, H., Wang, M.-K., & Zhang, W. (2015). Mechanism of arsenic adsorption on magnetite nanoparticles from water: thermodynamic and spectroscopic studies. Environmental Science and Technology, 49, 7726–7734.

    Article  CAS  Google Scholar 

  • Mamindy-Pajany, Y., Hurel, C., Marmier, N., & Roméo, M. (2009). Arsenic adsorption onto hematite and goethite. Comptes Rendus Chimie, 12, 876–881.

    Article  CAS  Google Scholar 

  • Mckay, G., & Bino, M. J. (1988). Adsorption of pollutants from wastewater onto activated carbon based on external mass transfer and pore diffusion. Water Research, 22, 279–286.

    Article  CAS  Google Scholar 

  • Mohan, D., & Pittman, C. U. (2007). Arsenic removal from water/wastewater using adsorbents—a critical review. Journal of Hazardous Materials, 142, 1–53.

    Article  CAS  Google Scholar 

  • Mondal, P., Majumder, C. B., & Mohanty, B. (2006). Laboratory based approaches for arsenic remediation from contaminated water: recent developments. Journal of Hazardous Materials, 137, 464–479.

    Article  CAS  Google Scholar 

  • Mondal, P., Balomajumder, C., & Mohanty, B. (2007). A laboratory study for the treatment of arsenic, iron, and manganese bearing ground water using Fe 3+ impregnated activated carbon: effects of shaking time, pH and temperature. Journal of Hazardous Materials, 144, 420–426.

    Article  CAS  Google Scholar 

  • Muniz, G., Fierro, V., Celzard, A., Furdin, G., Gonzalez-Sánchez, G., & Ballinas, M. L. (2009). Synthesis, characterization and performance in arsenic removal of iron-doped activated carbons prepared by impregnation with Fe (III) and Fe (II). Journal of Hazardous Materials, 165, 893–902.

    Article  CAS  Google Scholar 

  • Nikraftar, N., & Ghorbani, F. (2016). Adsorption of As (V) using modified magnetic nanoparticles with ascorbic acid: optimization by response surface methodology. Water, Air, and Soil Pollution, 227, 1–18.

    Article  CAS  Google Scholar 

  • Ociński, D., Jacukowicz-Sobala, I., Raczyk, J., & Kociołek-Balawejder, E. (2014). Evaluation of hybrid polymer containing iron oxides as As (III) and As (V) sorbent for drinking water purification. Reactive and Functional Polymers, 83, 24–32.

    Article  Google Scholar 

  • Phenrat, T., Marhaba, T. F., & Rachakornkij, M. (2005). A SEM and X-ray study for investigation of solidified/stabilized arsenic-iron hydroxide sludge. Journal of Hazardous Materials, 118, 185–195.

    Article  CAS  Google Scholar 

  • Phenrat, T., Marhaba, T. F., & Rachakornkij, M. (2008). Leaching behaviors of arsenic from arsenic-iron hydroxide sludge during TCLP. Journal of Environmental Engineering, 134, 671–682.

    Article  CAS  Google Scholar 

  • Raji, F., & Pakizeh, M. (2013). Study of Hg (II) species removal from aqueous solution using hybrid ZnCl2-MCM-41 adsorbent. Applied Surface Science, 282, 415–424.

    Article  CAS  Google Scholar 

  • Raji, F., & Pakizeh, M. (2014). Kinetic and thermodynamic studies of Hg (II) adsorption onto MCM-41 modified by ZnCl 2. Applied Surface Science, 301, 568–575.

    Article  CAS  Google Scholar 

  • Rostamizadeh, S., Shadjou, N., Azad, M., & Jalali, N. (2012). (α-Fe2O3)-MCM-41 as a magnetically recoverable nanocatalyst for the synthesis of pyrazolo [4, 3-c] pyridines at room temperature. Catalysis Communications, 26, 218–224.

    Article  CAS  Google Scholar 

  • Salameh, Y., Al-Lagtah, N., Ahmad, M. N. M., Allen, S. J., & Walker, G. M. (2010). Kinetic and thermodynamic investigations on arsenic adsorption onto dolomitic sorbents. Chemical Engineering Journal, 160, 440–446.

    Article  CAS  Google Scholar 

  • Sarkar, S., Greenleaf, J. E., Gupta, A., Ghosh, D., Blaney, L. M., Bandyopadhyay, P., Biswas, R. K., Dutta, A. K., & Sengupta, A. K. (2010). Evolution of community-based arsenic removal systems in remote villages in West Bengal, India: assessment of decade-long operation. Water Research, 44, 5813–5822.

    Article  CAS  Google Scholar 

  • Sawalha, M. F., Peralta-Videa, J. R., Romero-González, J., & Gardea-Torresdey, J. L. (2006). Biosorption of Cd (II), Cr (III), and Cr (VI) by saltbush (Atriplex canescens) biomass: thermodynamic and isotherm studies. Journal of Colloid and Interface Science, 300, 100–104.

    Article  CAS  Google Scholar 

  • Selvam, P., Bhatia, S. K., & Sonwane, C. G. (2001). Recent advances in processing and characterization of periodic mesoporous MCM-41 silicate molecular sieves. Industrial and Engineering Chemistry Research, 40, 3237–3261.

    Article  CAS  Google Scholar 

  • Sing, K. S. W. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57, 603–619.

    Article  CAS  Google Scholar 

  • Singh, T. S., & Pant, K. K. (2004). Equilibrium, kinetics and thermodynamic studies for adsorption of As (III) on activated alumina. Separation and Purification Technology, 36, 139–147.

    Article  CAS  Google Scholar 

  • Srivastava, V. C., Swamy, M. M., Mall, I. D., Prasad, B., & Mishra, I. M. (2006). Adsorptive removal of phenol by bagasse fly ash and activated carbon: equilibrium, kinetics and thermodynamics. Colloids Surf A, 272, 89–104.

    Article  CAS  Google Scholar 

  • Tang, W., Li, Q., Gao, S., & Shang, J. K. (2011). Arsenic (III, V) removal from aqueous solution by ultrafine α-Fe2O3 nanoparticles synthesized from solvent thermal method. Journal of Hazardous Materials, 192, 131–138.

    CAS  Google Scholar 

  • Tuutijärvi, T., Lu, J., Sillanpää, M., & Chen, G. (2009). As (V) adsorption on maghemite nanoparticles. Journal of Hazardous Materials, 166, 1415–1420.

    Article  Google Scholar 

  • Tuutijärvi, T., Vahala, R., Sillanpää, M., & Chen, G. (2012). Maghemite nanoparticles for As (V) removal: desorption characteristics and adsorbent recovery. Environmental Technology, 33, 1927–1936.

    Article  Google Scholar 

  • Ursachi, I., Vasile, A., Ianculescu, A., Vasile, E., & Stancu, A. (2011). Ultrasonic-assisted synthesis and magnetic studies of iron oxide/MCM-41 nanocomposite. Materials Chemistry and Physics, 130, 1251–1259.

    Article  CAS  Google Scholar 

  • Ursachi, I., Stancu, A., & Vasile, A. (2012). Magnetic α-Fe2O3/MCM-41 nanocomposites: preparation, characterization, and catalytic activity for methylene blue degradation. Journal of Colloid and Interface Science, 377, 184–190.

    Article  CAS  Google Scholar 

  • Wei, Z., Liang, K., Wu, Y., Zou, Y., Zuo, J., Arriagada, D. C. S., Pan, Z., & Hu, G. (2016). The effect of pH on the adsorption of arsenic (III) and arsenic (V) at the TiO 2 anatase [101] surface. Journal of Colloid and Interface Science, 462, 252–259.

    Article  CAS  Google Scholar 

  • Wu, Y., Jin, Y., Cao, J., Yilihan, P., Wen, Y., & Zhou, J. (2013). Optimizing adsorption of arsenic (III) by NH 2-MCM-41 using response surface methodology. Journal of Industrial and Engineering Chemistry, 20, 2792–2800.

    Article  Google Scholar 

  • Yadanaparthi, S. K. R., Graybill, D., & Von Wandruszka, R. (2009). Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters. Journal of Hazardous Materials, 171, 1–15.

    Article  CAS  Google Scholar 

  • Yin, J., Kim, E.-S., Yang, J., & Deng, B. (2012). Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification. Journal of Membrane Science, 423, 238–246.

    Article  Google Scholar 

  • Youngran, J., Maohong, F. A. N., Van Leeuwen, J., & Belczyk, J. F. (2007). Effect of competing solutes on arsenic (V) adsorption using iron and aluminum oxides. Journal of Environmental Sciences, 19, 910–919.

    Article  Google Scholar 

  • Zboril, R., Mashlan, M., & Petridis, D. (2002). Iron (III) oxides from thermal processes synthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications. Chemistry of Materials, 14, 969–982.

    Article  CAS  Google Scholar 

  • Zhou, S., Wang, D., Sun, H., Chen, J., Wu, S., & Na, P. (2014). Synthesis, characterization, and adsorptive properties of magnetic cellulose nanocomposites for arsenic removal. Water, Air, and Soil Pollution, 225, 1–13.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledged the Iran Nanotechnology Initiative Council for the financial supports and Mashhad Water & Wastewater Co. for the arsenic concentration tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Boojari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boojari, H., Pourafshari Chenar, M. & Pakizeh, M. Experimental Investigation of Arsenic (III, V) Removal from Aqueous Solution Using Synthesized α-Fe2O3/MCM-41 Nanocomposite Adsorbent. Water Air Soil Pollut 227, 290 (2016). https://doi.org/10.1007/s11270-016-2989-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2989-6

Keywords

Navigation