Skip to main content
Log in

Agricultural Drainage Filters. I. Filter Hydro-Physical Properties and Tracer Transport

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Drainage filters using porous granular material constitute new innovative technologies for remediating phosphorus (P) from agricultural tile drainage water. In drainage filters where convective velocities are often high, we hypothesize that intragranular diffusion may affect solute transport depending on filter characteristics and flow rate. This was investigated for six drainage filter materials (Leca, Filtralite-P®, granulated limestone, crushed seashells, calcined diatomite earth (CDE), and a poorly ordered Fe oxide aggregate (CFH)) conducting a tritium (3H2O) tracer experiment at low (0.26 cm h−1), medium (23 cm h−1), and high (41 cm h−1) flux densities. The filter materials differed widely with respect to grain-size distribution (D 50 from 1.6 to 3.3 mm), uniformity coefficient (1.7 to 2.2), particle density (1.75 to 2.76 g cm−3), bulk density (0.34 to 1.46 g cm−3), and water-filled porosity (0.39 to 0.73 cm3 cm−3). Measurements of specific surface area (SSA) included both SSABET and SSAEGME to ensure inclusion of the intragranular microporosity, not accounted by N2-BET. SSA varied widely across methods and allowed the differentiation of filters according to the significance of the intragranular porosity. Tritium transport varied from approximately equilibrium transport at all flow rates in Leca, Filtralite-P®, and limestone, to progressive non-equilibrium transport as flow rate increased in Seashells, CDE, and CFH. In general, the filter materials were highly variable in hydro-physical properties. Filters with (approximately) equilibrium transport were, however, all characterized by low specific surface areas. The non-equilibrium transport was explained by an intragranular diffusion in filters with larger specific surface area (Seashells, CDE, and CFH).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BTCs:

Breakthrough curves

P:

Phosphorus

CFH:

Ferric hydroxide granules

CDE:

Calcined diatomite earth

ADW:

Artificial agricultural drainage water

SSABET and SSAEGME :

Specific surface area by BET and EGME method

References

  • Abell, J. M., Özkundakci, D., & Hamilton, D. P. (2010). Nitrogen and phosphorus limitation of phytoplankton growth in New Zealand lakes: implications for eutrophication control. Ecosystems, 13(7), 966–977.

    Article  CAS  Google Scholar 

  • Axe, L., & Trivedi, P. (2002). Intraparticle surface diffusion of metal contaminants and their attenuation in microporous amorphous Al, Fe, and Mn oxides. Journal of Colloid and Interface Science, 247(2), 259–265. doi:10.1006/jcis.2001.8125.

    Article  CAS  Google Scholar 

  • Bolan, N. S., Barrow, N. J., & Posner, A. M. (1985). Describing the effect of time on sorption of phosphate by iron and aluminium hydroxides. Journal of Soil Science, 36(2), 187–197. doi:10.1111/j.1365-2389.1985.tb00323.x.

    Article  CAS  Google Scholar 

  • Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60(2), 309–319.

    Article  CAS  Google Scholar 

  • Brusseau, M. L., & Rao, P. S. C. (1990). Modeling solute transport in structured soils: a review. Geoderma, 46(1), 169–192.

    Article  Google Scholar 

  • Brustad, K., & Njos, A. (1980). Simulation of flow patterns and ion-exchange in soil percolation experiments. Water, Air, and Soil Pollution, 13(4), 459–472. doi:10.1007/bf02191847.

    Article  Google Scholar 

  • Buda, A. R., Koopmans, G. F., Bryant, R. B., & Chardon, W. J. (2012). Emerging technologies for removing nonpoint phosphorus from surface water and groundwater: introduction. Journal of Environmental Quality, 41(3), 621–627.

    Article  CAS  Google Scholar 

  • Canga, E., Iversen, B. V., & Kjaergaard, C. (2014). A simplified transfer function for estimating saturated hydraulic conductivity of porous drainage filters. Water, Air, & Soil Pollution, 225(1), 1–13.

    Article  CAS  Google Scholar 

  • Canga, E., Heckrath, G., & Kjaergaard, C. (2016). Agricutlural drainage filters. II. Phosphorus retention and release at different flow rates. Water, Air, & Soil Pollution, 227(8), 1–13. doi:10.1007/s11270-016-2963-3.

  • Carpenter, S. R. (2005). Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proceedings of the National Academy of Sciences of the United States of America, 102(29), 10002–10005.

    Article  CAS  Google Scholar 

  • Chardon, W. J., Groenenberg, J. E., Temminghoff, E. J., & Koopmans, G. F. (2012). Use of reactive materials to bind phosphorus. Journal of Environmental Quality, 41(3), 636–646.

    Article  CAS  Google Scholar 

  • Cyrus, J. S., & Reddy, G. B. (2010). Sorption and desorption of phosphorus by shale: batch and column studies. Water Science & Technology, 61(3), 599–606.

    Article  CAS  Google Scholar 

  • Drizo, A., Frost, C. A., Grace, J., & Smith, K. A. (1999). Physico-chemical screening of phosphate-removing substrates for use in constructed wetland systems. Water Research, 33(17), 3595–3602.

    Article  CAS  Google Scholar 

  • European Commission. (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy.

    Google Scholar 

  • Fuchs, J. W., Fox, G. A., Storm, D. E., Penn, C. J., & Brown, G. O. (2009). Subsurface transport of phosphorus in riparian floodplains: influence of preferential flow paths. Journal of Environmental Quality, 38(2), 473–484.

    Article  CAS  Google Scholar 

  • Gentry, L. E., David, M. B., Royer, T. V., Mitchell, C. A., & Starks, K. M. (2007). Phosphorus transport pathways to streams in tile-drained agricultural watersheds. Journal of Environmental Quality, 36(2), 408–415. doi:10.2134/jeq2006.0098.

    Article  CAS  Google Scholar 

  • Gregg, S. J., & Sing, K. S. W. (1982). Adsorption, surface area and porosity (pp. 242–245). New York: Academic.

  • Hay, M. B., Stoliker, D. L., Davis, J. A., & Zachara, J. M. (2011). Characterization of the intragranular water regime within subsurface sediments: pore volume, surface area, and mass transfer limitations. Water Resources Research, 47(10). doi:10.1029/2010WR010303.

  • Haygarth, P. M., Condron, L. M., Heathwaite, A. L., Turner, B. L., & Harris, G. P. (2005). The phosphorus transfer continuum: linking source to impact with an interdisciplinary and multi-scaled approach. Science of the Total Environment, 344(1), 5–14.

    Article  CAS  Google Scholar 

  • Heathwaite, A. L., & Dils, R. M. (2000). Characterising phosphorus loss in surface and subsurface hydrological pathways. Science of the Total Environment, 251, 523–538.

    Article  Google Scholar 

  • Herrmann, I., Jourak, A., Lundström, T. S., Hedström, A., & Viklander, M. (2012). Phosphorus binding to Filtra P in batch tests. Environmental Technology, 33(9), 1013–1019.

    Article  CAS  Google Scholar 

  • Hu, Q., & Brusseau, M. L. (1995). Effect of solute size on transport in structured porous media. Water Resources Research, 31(7), 1637–1646. doi:10.1029/95wr01138.

    Article  CAS  Google Scholar 

  • Jenssen, P. D., Krogstad, T., Paruch, A. M., Mæhlum, T., Adam, K., Arias, C. A., et al. (2010). Filter bed systems treating domestic wastewater in the Nordic countries–performance and reuse of filter media. Ecological Engineering, 36(12), 1651–1659. doi:10.1016/j.ecoleng.2010.07.004.

    Article  Google Scholar 

  • Kalhori, E. M., Yetilmezsoy, K., Uygur, N., Zarrabi, M., & Shmeis, R. M. A. (2013). Modeling of adsorption of toxic chromium on natural and surface modified lightweight expanded clay aggregate (LECA). Applied Surface Science, 287, 428–442. doi:10.1016/j.apsusc.2013.09.175.

    Article  CAS  Google Scholar 

  • Khraisheh, M. A. M., Al-Ghouti, M. A., Allen, S. J., & Ahmad, M. N. (2005). Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite. Water Research, 39(5), 922–932. doi:10.1016/j.watres.2004.12.008.

    Article  CAS  Google Scholar 

  • King, K. W., Williams, M. R., & Fausey, N. R. (2015). Contributions of systematic tile drainage to watershed-scale phosphorus transport. Journal of Environmental Quality, 44(2), 486–494.

    Article  Google Scholar 

  • Lai, C. H., Lo, S. L., & Chiang, H. L. (2000). Adsorption/desorption properties of copper ions on the surface of iron-coated sand using BET and EDAX analyses. Chemosphere, 41(8), 1249–1255. doi:10.1016/S0045-6535(99)00534-2.

    Article  CAS  Google Scholar 

  • Lyngsie, G., Borggaard, O. K., & Hansen, H. C. B. (2014). A three-step test of phosphate sorption efficiency of potential agricultural drainage filter materials. Water Research, 51, 256–265. doi:10.1016/j.watres.2013.10.061.

    Article  CAS  Google Scholar 

  • Makris, K. C., El-Shall, H., Harris, W. G., O’Connor, G. A., & Obreza, T. A. (2004). Intraparticle phosphorus diffusion in a drinking water treatment residual at room temperature. Journal of Colloid and Interface Science, 277(2), 417–423. doi:10.1016/j.jcis.2004.05.001.

    Article  CAS  Google Scholar 

  • Makris, K. C., Harris, W. G., O’Connor, G. A., Obreza, T. A., & Elliott, H. A. (2005). Physicochemical properties related to long-term phosphorus retention by drinking-water treatment residuals. Environmental Science & Technology, 39(11), 4280–4289. doi:10.1021/es0480769.

    Article  CAS  Google Scholar 

  • Maraqa, M. A., Wallace, R. B., & Voice, T. C. (1997). Effects of degree of water saturation on dispersivity and immobile water in sandy soil columns. Journal of Contaminant Hydrology, 25(3), 199–218. doi:10.1016/S0169-7722(96)00032-0.

    Article  CAS  Google Scholar 

  • McDowell, R. W., Sharpley, A. N., & Bourke, W. (2008). Treatment of drainage water with industrial by-products to prevent phosphorus loss from tile-drained land. Journal of Environmental Quality, 37(4), 1575–1582. doi:10.2134/jeq2007.0454.

    Article  CAS  Google Scholar 

  • Millington, R. J., & Shearer, R. C. (1971). Diffusion in aggregated porous media. Soil Science, 111(6), 372–378.

    Article  CAS  Google Scholar 

  • Moldrup, P., Olesen, T., Yamaguchi, T., Schjønning, P., & Rolston, D. E. (1999). Modeling diffusion and reaction in soils: VIII. Gas diffusion predicted from single-potential diffusivity or permeability measurements. Soil Science, 164(2), 75–81. doi:10.1097/00010694-199902000-00001.

    Article  CAS  Google Scholar 

  • Neves, N. M., & Mano, J. F. (2005). Structure/mechanical behavior relationships in crossed-lamellar sea shells. Materials Science and Engineering: C, 25(2), 113–118.

    Article  Google Scholar 

  • Nooney, M. G., Campbell, A., Murrell, T. S., Lin, X. F., Hossner, L. R., Chusuei, C. C., & Goodman, D. W. (1998). Nucleation and growth of phosphate on metal oxide thin films. Langmuir, 14(10), 2750–2755. doi:10.1021/la9702695.

    Article  CAS  Google Scholar 

  • Passioura, J. B., & Rose, D. A. (1971). Hydrodynamic dispersion in aggregated media: 2. Effects of velocity and aggregate size. Soil Science, 111(6), 345–351.

    Article  CAS  Google Scholar 

  • Pennell, K. D. (2002). Specific surface area. In J. H. Dane & G. C. Topp (Eds.), Methods of soil analysis. Part 4. Physical methods (Ser. 5, pp. 295–315). Madison: SSSA. SSSA Book.

    Google Scholar 

  • Rao, P. S. C., Rolston, D. E., Jessup, R. E., & Davidson, J. M. (1980). Solute transport in aggregated porous media: theoretical and experimental evaluation. Soil Science Society of America Journal, 44(6), 1139–1146.

    Article  CAS  Google Scholar 

  • SAS Institute. (2008). User’s guide: statistics. Cary: SAS Inst.

    Google Scholar 

  • Schoumans, O. F., Chardon, W. J., Bechmann, M. E., Gascuel-Odoux, C., Hofman, G., Kronvang, B., Rubæk, G. H., Ulén, B., & Dorioz, J. M. (2014). Mitigation options to reduce phosphorus losses from the agricultural sector and improve surface water quality: a review. Science of the Total Environment, 468, 1255–1266.

    Article  Google Scholar 

  • Sims, J. T., Simard, R. R., & Joern, B. C. (1998). Phosphorus loss in agricultural drainage: historical perspective and current research. Journal of Environmental Quality, 27(2), 277–293.

    Article  CAS  Google Scholar 

  • Suliman, F., Futsaether, C., & Oxaal, U. (2007). Hydraulic performance of horizontal subsurface flow constructed wetlands for different strategies of filling the filter medium into the filter basin. Ecological Engineering, 29(1), 45–55.

    Article  Google Scholar 

  • Ulén, B., Bechmann, M., Fölster, J., Jarvie, H. P., & Tunney, H. (2007). Agriculture as a phosphorus source for eutrophication in the north‐west European countries, Norway, Sweden, United Kingdom and Ireland: a review. Soil Use and Management, 23(s1), 5–15.

    Article  Google Scholar 

  • Van Genuchten, M. T., & Wierenga, P. J. (1976). Mass transfer studies in sorbing porous media. I. Analytical solutions. Soil Science Society of America Journal, 40(4), 473–480. doi:10.2136/sssaj1976.03615995004000040011x.

    Article  Google Scholar 

  • Van Genuchten, M. T., Wierenga, P. J., & O’Connor, G. A. (1977). Mass transfer studies in sorbing porous media: III. Experimental evaluation with 2, 4, 5-T. Soil Science Society of America Journal, 41(2), 278–285. doi:10.2136/sssaj1977.03615995004100020023x.

    Article  Google Scholar 

  • Van Riemsdijk, W. H., & Lyklema, J. (1980). The reaction of phosphate with aluminum hydroxide in relation with phosphate bonding in soils. Colloids and Surfaces, 1(1), 33–44. doi:10.1016/0166-6622(80)80036-9.

    Article  Google Scholar 

  • Vohla, C., Kõiv, M., Bavor, H. J., Chazarenc, F., & Mander, Ü. (2011). Filter materials for phosphorus removal from wastewater in treatment wetlands—a review. Ecological Engineering, 37(1), 70–89. doi:10.1016/j.ecoleng.2009.08.003.

    Article  Google Scholar 

  • Wood, W. W., Kraemer, T. F., & Hearn, P. P. (1990). Intragranular diffusion: an important mechanism influencing solute transport in clastic aquifers? Science, 247(4950), 1569–1572. doi:10.1126/science.247.4950.1569.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research study was part of the project “Sustainable Phosphorus Removal and Recycle Technologies” (Supreme-Tech, www.supremetech.dk) funded by Danish Strategic Research Council, grant number 09-067280. We thank Lene Skovmose Andersen and Michael Koppelgaard for their technical assistance in laboratory. The provision of the SSAEGME data by Lorenzo Pugliese is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eriona Canga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canga, E., Kjaergaard, C., Iversen, B.V. et al. Agricultural Drainage Filters. I. Filter Hydro-Physical Properties and Tracer Transport. Water Air Soil Pollut 227, 289 (2016). https://doi.org/10.1007/s11270-016-2987-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2987-8

Keywords

Navigation