Advertisement

Antibiotic Resistance in Airborne Bacteria Near Conventional and Organic Beef Cattle Farms in California, USA

  • Helen M. Sancheza
  • Cristina Echeverria
  • Vanessa Thulsiraj
  • Amy Zimmer-Faust
  • Ariel Flores
  • Madeleine Laitz
  • Gregory Healy
  • Shaily Mahendra
  • Suzanne E. Paulson
  • Yifang Zhu
  • Jennifer A. JayEmail author
Article

Abstract

Levels of antibiotic resistance genes (ARGs) and the fractions of antibiotic resistant bacteria (ARB) among culturable heterotrophic bacteria were compared in outdoor air near conventional (n = 3) and organic (n = 3) cattle rearing facilities. DNA extracts from filters taken from 18 locations were analyzed by quantitative polymerase chain reaction (qPCR) for five ARGs. At the reference (non-agricultural) site, all genes were below detection. ARGs sul1, bla SHV, erm(B), and bla TEM were more frequently detected and at higher levels (up to 870 copies m−3 for bla SHV and 750 copies m−3 for sul1) near conventional farms compared to organic locations while the opposite was observed for erm(F) (up to 210 copies m−3). Isolates of airborne heterotrophic bacteria (n = 1295) collected from the sites were tested for growth in the presence of six antibiotics. By disk diffusion on a subset of isolates, the fractions of ARB were higher for conventional sites compared to organic farms for penicillin (0.9 versus 0.63), cloxacillin (0.74 versus 0.23), cefoperazone (0.58 versus 0.14), and sulfamethazine (0.50 versus 0.33) for isolates on nutrient agar. All isolates’ ΔA600pres/ΔA600abs were measured for each of the six tested antibiotics; isolates from farms downwind of organic sites had a lower average ΔA600pres/ΔA600abs for most antibiotics. In general, all three analyses used to indicate microbial resistance to antibiotics showed increases in air samples nearby conventional versus organic cattle rearing facilities. Regular surveillance of airborne ARB and ARGs near conventional and organic beef cattle farms is suggested.

Keywords

Antibiotic resistance Organic Conventional Air ARGs Cattle 

Notes

Acknowledgements

This material is based upon research performed in a renovated collaboratory by the National Science Foundation under Grant No. 0963183, which is an award funded under the American Recovery and Reinvestment Act of 2009 (ARRA). We are grateful to Winston Lee, Karmina Padgett, Elizabeth Roswell, Cindy Xiong, and Alicia Amundson. Funding was provided by the Natural Resources Defense Fund and the Institute of the Environment and Sustainability at UCLA.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they no conflict of interest.

Supplementary material

11270_2016_2979_MOESM1_ESM.pdf (253 kb)
ESM 1 (PDF 253 kb)

References

  1. Alali, W. Q., Thakur, S., Berghaus, R. D., Martin, M. P., & Gebreyes, W. A. (2010). Prevalence and distribution of salmonella in organic and conventional broiler poultry farms. Foodborne Pathogens and Disease, 7, 1363–1371.CrossRefGoogle Scholar
  2. Antibiotic Resistance Threats in the United States (2013). Centers for Disease Control and Prevention, 2013, www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf.Google Scholar
  3. van den Bogaard, A. E., London, N., Driessen, C., & Stobberingh, E. E. (2001). Antibiotic resistance of faecal Escherichia coli in poultry, poultry farmers and poultry slaughterers. The Journal of Antimicrobial Chemotherapy, 47, 763–771.CrossRefGoogle Scholar
  4. van den Bogaard, A. E., Williams, R., London, N., Top, J., & Stobberingh, E. (2002). Antibiotic resistance of faecal enterococci in poultry, poultry farmers and poultry slaughterers. The Journal of Antimicrobial Chemotherapy, 49, 497–505.CrossRefGoogle Scholar
  5. Brown, M. G., & Balkwill, D. L. (2009). Antibiotic resistance in Bacteria Isolated from the deep terrestrial SUBSURFACE. Microbial Ecology, 57(3), 484–493.CrossRefGoogle Scholar
  6. Bunner, C. A., Norby, P. C., & Bartlett, T. (2007). Prevalence and pattern of antimicrobial susceptibility in Escherichia coli isolated from pigs reared under antimicrobial-free and conventional production methods. Journal of the American Veterinary Medical Association, 231, 275–283.CrossRefGoogle Scholar
  7. Burrows, G. E., Griffin, D. D., Pippin, A., & Harris, K. (1989). A comparison of the routes of administration of erythromycin in cattle. Journal of Veterinary Pharmacology and Therapeutics, 12, 289–295.CrossRefGoogle Scholar
  8. Chapin, A., Rule, A., Gibson, K., Buckley, T., & Schwab, K. (2005). Airborne multidrug-resistant bacteria isolated from a concentrated swine feeding operation. Environmental Health Perspectives, 113, 137–142.Google Scholar
  9. Cho, S.-H., Lim, Y. S., & Kang, Y.-H. (2012) Comparison of antimicrobial resistance in escherichia coli strains isolated from healthy poultry and swine farm workers using antibiotics in Korea. Osong Public Health and Research Perspectives, 3, 151–155.Google Scholar
  10. Czekalski, N., Berthold, T., Caucci, S., Egli, A., & Burgmann, H. (2012). Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into Lake Geneva, Switzerland. Frontiers in Microbiology., 3, 1–18.CrossRefGoogle Scholar
  11. Fahrenfeld, N., Ma, Y., O’Brien, M., & Pruden, A. (2013). Reclaimed water as a reservoir of antibiotic resistance genes: distribution system and irrigation implications. Frontiers in Microbiology, 4, 1–10.CrossRefGoogle Scholar
  12. Garder, J. L., Moorman, T. B., & Soupir, M. (2014). Transport and persistance of tylosin-resistant enterococci, erm genes, and tylosin in soil and drainage water from fields receiving swine manure. Journal of Environmental Quality, 43, 1484–1493.CrossRefGoogle Scholar
  13. Gebreyes, W. A., Thakur, S., & Morrow, W. E. (2005). Campylobacter coli: prevalence and antimicrobial resistance in antimicrobial-free (ABF) swine production systems. Journal of Antimicrobial Chemotherapy, 56, 765–768.CrossRefGoogle Scholar
  14. Ghosh, S., & La Para, T. (2007). The effects of subtherapeutic antibiotic use in farm animals on the proliferation and persistence of antibiotic resistance among soil bacteria. International Society for Microbial Ecology Journal, 1, 191–203.Google Scholar
  15. Gibbs, S. G., Green, C. F., Tarwater, P. M., Mota, L. C., Mena, K. D., & Scarpino, P. V. (2006). Isolation of antibiotic-resistant bacteria from the air plume downwind of a swine confined or concentrated animal feeding operation. Environmental Health Perspectives, 114, 1032–1037.CrossRefGoogle Scholar
  16. Graham, J. P., Leibler, J. H., Price, L. B., Otte, J. M., Pfeiffer, D. U., Tiensin, T., & Silbergeld, E. K. (2008). The animal-human interface and infectious disease in industrial food animal production: rethinking biosecurity and biocontainment. Public Health Reports, 123, 282–299.Google Scholar
  17. Graham, D. W., Olicares-Rieumont, S., Knapp, C. W., Lima, L., Werner, D., & Bowen, E. (2011). Antibiotic resistance gene abundances associated with waste discharges to the Almendates River near Havana, Cuba. Environmental Science and Technology, 45(2), 418–424.CrossRefGoogle Scholar
  18. Green, C. F., Gibbs, S. G., Tarwater, P. M., Mota, L. C., & Scarpino, P. V. (2006). Bacterial plume emanating from the air surrounding swine confinement operations. Journal of Occupational and Environmental Hygiene, 3, 9–15.CrossRefGoogle Scholar
  19. Guidance for Industry #213: New Animal Drugs and New Animal Drug Combination Products Administered in or on Medicated Feed or Drinking Water of Food-Producing Animals: Recommendations for Drug Sponsors for Voluntarily Aligning Product Use Conditions with GFI #209, U.S. Department of Health and Human Services, Food and Drug Administration, (2013). www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/UCM299624.pdf
  20. Halbert, L. W., Kaneene, J. B., Ruegg, P. M., Warnick, L. D., Wells, S. J., Mansfield, L. S., Foddler, C. P., Campbell, A. M., & Geiger-Zwald, A. M. (2006). Evaluation of antimicrobial susceptibility patterns in Campylobacter spp isolated from dairy cattle and farms managed organically and conventionally in the Midwestern and northeastern United States. JAVMA, 228, 1074–1081.CrossRefGoogle Scholar
  21. Heuer, O. E., Pedersen, K., Andersen, J. S., & Madsen, M. (2001). Prevalence and antimicrobial susceptibility of thermophilic Campylobacter in organic and conventional broiler flocks. Letters in Applied Microbiology, 33, 269–274.CrossRefGoogle Scholar
  22. Heuer, H., Solehati, Q., Zimmerling, U., Kleineidam, K., Schloter, M., Muller, T., Focks, A., Thiele-Bruhn, S., & Smalla, K. (2011). Accumulation of sulfonamide resistance genes in arable soils due to repeated application of manure containing sulfadiazine. Applied and Environmental Microbiology, 77, 2527–2530.CrossRefGoogle Scholar
  23. Huang, J., Hu, H., Tang, F., Li, Y., Lu, S., & Lu, Y. (2011). Inactivation and reactivation of antibiotic-resistant bacteria by chlorination in secondary effluents of a municipal wastewater treatment plant. Water Research, 45, 2775–2781.CrossRefGoogle Scholar
  24. Huijbers, P.M., Blaak, H., de Jong, M.C.M., Graat, E.A.M., Vandenbroucke-Grauls, C.M.J.E. and Husman, A.M.D.R. (2015). Role of the environment in the transmission of antimicrobial resistance to humans: A review. Envir Sci Technol.Google Scholar
  25. Knapp, C. (2010). Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environmental Science & Technology, 44, 580–587.CrossRefGoogle Scholar
  26. Knapp, C., Zhang, W., Sturm, B., & Graham, D. (2010). Differential fate of erythromycin and beta-lactam resistance genes from swine lagoon waste under different aquatic conditions. Environmental Pollution, 158, 1506–1512.CrossRefGoogle Scholar
  27. Levy, S. B. (1978). Emergence of antibiotic resistant bacteria in the intestinal flora of farm inhabitants. Journal of Infectious Diseases, 137, 688–690.CrossRefGoogle Scholar
  28. Levy, S. B., & Marshall, B. (2004). Antibacterial resistance worldwide: causes, challenges and responses. Nature Medicine, 10(12 Suppl), S122–9.CrossRefGoogle Scholar
  29. Ling, A., Pace, N. R., Hernandez, M. T., & LaPara, T. M. (2013). Tetracycline resistance and class 1 Integron genes associated with indoor and outdoor aerosols. Environmental Science & Technology, 47(9), 4046–4052.CrossRefGoogle Scholar
  30. Luangtongkum, T., Morishita, T., Ison, A., Huang, S., McDermott, P., & Zhang, Q. (2006). Effect of conventional and organic production practices on the prevalence and antimicrobial resistance of Camplobactar spp. in Poultry. Applied and Environmental Microbiology, 72, 3600–3607.CrossRefGoogle Scholar
  31. Mathew, A. G., Beckmann, M. A., & Saxton, A. M. (2001). A comparison of antibiotic resistance in bacteria isolated from swine herds in which antibiotics were used or excluded. Journal of Swine Health and Production, 9, 125–129.Google Scholar
  32. McEachran, A. D., Blackwell, B. R., Delton Hanson, J., Wooten, K. J., Mayer, G. D., Cox, S. B., & Smith, P. N. (2015). Antibiotics, bacteria, and antibiotic resistance genes: aerial transport from cattle feed yards via particulate matter. Environmental Health Perspectives, 123(4), 337–343.Google Scholar
  33. Mellon, M., Benbrook, C., Benbrook, and K.L. (2001). Hogging It: Estimates of Antimicrobial Abuse in Livestock, Union of Concerned Scientists Publications, Cambridge, MA.Google Scholar
  34. Millman, J. M., Waits, K., Grande, H., Marks, A. R., Marks, J. C., Price, L. B., & Hungate, B. A. (2013). Prevalence of antibiotic-resistant E. coli in retail chicken: comparing conventional, organic, kosher, and raised without antibiotics. F1000 Research, 2, 155–165.Google Scholar
  35. Miranda, J. M., Mondragón, A., Vázquez, B. I., Fente, C. A., Cepeda, A., & Franco, C. M. (2009) Influence of farming methods on microbiological contamination and prevalence of resistance to antimicrobial drugs in isolates from beef. Meat Science, 82, 284–288.Google Scholar
  36. Negreanu, Y., Pasternak, Z., Jurkevitch, E., & Cytryn, E. (2012). Impact of treated wastewater irrigation on antibiotic resistance in agricultural soils. Environmental Science & Technology, 46, 4800–4808.CrossRefGoogle Scholar
  37. Olmstead, J. (2012). How the FDA Fails to Regulate Antibiotics in Ethanol Production, Institute for Agriculture and Trade Policy.Google Scholar
  38. Price, L. B., Johnson, E., Vailes, R., & Silbergeld, E. (2005). Fluoroquinolone-resistant Campylobacter isolates from conventional and antibiotic-free chicken products. Environmental Health Perspectives, 113, 557–560.CrossRefGoogle Scholar
  39. Price, L. B., Lackey, L. G., Vailes, R., & Silbergeld, E. (2007). The persistence of fluoroquinolone-resistant Campylobacter in poultry production. Environmental Health Perspectives, 115, 1035–1039.CrossRefGoogle Scholar
  40. Pruden, A., Pei, R., Storteboom, H., & Carlson, K. H. (2006). Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environmental Science & Technology, 40, 7445–7450.CrossRefGoogle Scholar
  41. Pruden, A., Arabi, M., & Storteboom, H. N. (2012). Correlation between upstream human activities and riverine antibiotic resistance genes. Environmental Science & Technology, 46, 11541–11549.CrossRefGoogle Scholar
  42. Pruden, A., Larsson, D. G. J., Amezquita, A., Collignon, P., Brandt, K. K., Graham, D. W., Lazorchak, J. R., Suzuki, S., Silley, P., Snape, J. R., Topp, E., Zhang, T., & Zhu, Y. G. (2013). Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environmental Health Perspectives, 121, 1–9.CrossRefGoogle Scholar
  43. Pruden, A. (2014). Balancing water sustainability and public health goals in the face of growing concerns about antibiotic. Environmental Science & Technology, 48, 5–14.CrossRefGoogle Scholar
  44. Ramsden, S. J., Ghosh, S., Bohl, L. J., & LaPara, T. M. (2010). Phenotypic and genotypic analysis of bacteria isolated from three municipal wastewater treatment plants on tetracycline-amended and ciprofloxacin-amended growth media. Journal of Applied Microbiology, 109, 1609–1618.Google Scholar
  45. Ray, K. A., Warnick, L. D., Mitchell, R. M., Kaneene, J. B., Ruegg, P. L., Wells, S. J., Fossler, C. P., Halbert, W., & May, K. (2006). Antimicrobial susceptibility of Salmonella from organic and conventional dairy farms. Journal of Dairy Science, 89, 2038–2050.CrossRefGoogle Scholar
  46. Reinstein, S., Fox, J. T., Shi, X., Alam, M. J., Renter, G., & Nagaraja, T. G. (2009). Prevalence of Escherichia coli O157:H7 in organically and naturally raised beef cattle. Applied and Environmental Microbiology, 75, 5421–5423.CrossRefGoogle Scholar
  47. Rule, A. M., Evans, S. L., & Silbergeld, E. K. (2008). Food animal transport: a potential source of community exposures to health hazards from industrial farming (CAFOs). Journal of Infection and Public Health, 1, 33–39.CrossRefGoogle Scholar
  48. Sanderson, H., Fricker, C., Brown, R. S., Majury, A., & Liss, S. N. (2016) Antibiotic resistance genes as an emerging environmental contaminant. Environmental Research, 24, 205–218.Google Scholar
  49. Sato, K., Bartlett, P. C., & Saeed, M. A. (2006). Antimicrobial susceptibility of Escherichia coli isolates from dairy farms using organic versus conventional production methods. Journal of the American Veterinary Medical Association, 226, 589–594.CrossRefGoogle Scholar
  50. Schnoor, J. L. (2014). Re-emergence of emerging contaminants. Environmental Science & Technology, 48(19), 11019–11020.CrossRefGoogle Scholar
  51. Schwartz, T., Kohnen, W., Jansen, B., & Obst, U. (2003). Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiology Ecology, 43, 325–335.CrossRefGoogle Scholar
  52. Shanks, O. C., Sivaganesan, M., Peed, L., Kelty, C. A., Blackwood, A. D., Greene, M. R., Noble, R. T., Bushon, R. N., Stelzer, E. A., Kinzelman, J., Ananeva, T., Singalliano, C., Wanless, D., Griffith, J., Cao, Y., Weisberg, S., Harwood, V. J., Staley, C., Oshima, K. H., Varma, M., & Haugland, R. A. (2012). 560 Interlaboratory comparison of real-time PCR protocols for quantification of general fecal 561 indicator bacteria. Environmental Science & Technology, 46, 945–953.CrossRefGoogle Scholar
  53. Silbergeld, E. E., Graham, J., & Price, L. B. (2008). Industrial food animal production, antimicrobial resistance, and human health. Annual Review of Public Health, 29, 151–169.CrossRefGoogle Scholar
  54. Stoll, C., Sidhu, J. P. S., Tiehm, A., & Toze, S. (2012). Prevalence of clinically relevant antibiotic resistance genes in surface water samples collected from Germany and Australia. Environmental Science & Technology, 46, 9716–9726.CrossRefGoogle Scholar
  55. Storteboom, H., Arabi, M., Davis, J. D., Crimi, B., & Pruden, A. (2010). Tracking antibiotic resistance genes in the south platte river basin using molecular signatures of urban, agricultural, and pristine sources. Environmental Science & Technology, 44, 7397–7404.CrossRefGoogle Scholar
  56. Su, H. C., Pan, C. G., Ying, G. G., Zhao, J. L., Zhou, L. J., Liu, Y. S., Tao, R., Zhang, R. Q., & He, L. Y. (2014). Contamination profiles of antibiotic resistance genes in the sediments at a catchment scale. The Science of the Total Environment, 490, 708–714.CrossRefGoogle Scholar
  57. USDA National Organic Program; National Archives and Records Administration (2012a). Title 7: Agriculture.Google Scholar
  58. WHO. Antimicrobial Resistance: Global Report on Surveillance, WHO Press (2014). http://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf.
  59. Wittwer, M., Keller, J., Wassenaar, R., Stephan, D. H., Regula, G., & Bissig-Choisat, B. (2005). Genetic diversity and antibiotic resistance patterns in a campylobacter population isolated from poultry farms in Switzerland. Applied and Environmental Microbiology, 71, 2840–2847.CrossRefGoogle Scholar
  60. Woolhouse, M., & Farrar, J. (2014). An intergovernmental panel on antimicrobial resistance. Nature, 509, 555–557.CrossRefGoogle Scholar
  61. Xu, Y., Yu, W., Ma, Q., & Zhou, H. (2015). Occurrence of (fluoro)quinolones and (fluoro)quinolone resistance in soil receiving swine manure for 11 years. Science of the Total Environment, 530–531, 191–197.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Helen M. Sancheza
  • Cristina Echeverria
    • 1
  • Vanessa Thulsiraj
    • 1
  • Amy Zimmer-Faust
    • 1
  • Ariel Flores
    • 1
  • Madeleine Laitz
    • 1
  • Gregory Healy
    • 1
  • Shaily Mahendra
    • 1
  • Suzanne E. Paulson
    • 1
  • Yifang Zhu
    • 1
  • Jennifer A. Jay
    • 1
    Email author
  1. 1.Department of Civil and Environmental EngineeringUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations