Skip to main content
Log in

Degradation of Diuron by Electrochemically Activated Persulfate

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

An electrochemically activated persulfate (EC/PS) system was proposed for the degradation of herbicide diuron in this study. In the EC/PS system, the ferrous ions (Fe2+) produced from iron electrode can activate persulfate to generate sulfate radical (SO4 ·-) as well as hydroxyl radical (OH). The results showed that the degradation of diuron was significantly enhanced in the EC/PS system, compared to electrocoagulation, persulfate, and Fe2+/PS process. Both of SO4 ·- and OH· contributed to the degradation of diuron in the EC/PS system according to the radical scavenging studies. The pseudo first-order rate constants of diuron increased with increasing the applied currents and dosages of persulfate. pH affected the degradation of diuron indirectly through the speciation of iron and resulted in higher removal efficiency in acidic condition than in alkaline condition. Chloride, carbonate, and bicarbonate in real water inhibited the degradation of diuron dramatically through consuming SO4 ·- and OH· and abided by the order of CO3 2−>HCO3 >Cl. This study demonstrates that the EC/PS system is a novel, efficient, promising, and environmental-friendly method to treat diuron contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anipsitakis, G. P., & Dionysiou, D. D. (2004). Radical generation by the interaction of transition metals with common oxidants. Environmental Science & Technology, 38, 3705–3712.

    Article  CAS  Google Scholar 

  • Antonin, V. S., Santos, M. C., Garcia-Segura, S., & Brillas, E. (2015). Electrochemical incineration of the antibiotic ciprofloxacin in sulfate medium and synthetic urine matrix. Water Research, 83, 31–41.

    Article  CAS  Google Scholar 

  • Bu, L., Zhou, S., Shi, Z., Deng, L., Li, G., Yi, Q., & Gao, N. (2016). Degradation of oxcarbazepine by UV-activated persulfate oxidation: kinetics, mechanisms, and pathways. Environmental Science and Pollution Research, 23(3), 2848–2855.

    Article  CAS  Google Scholar 

  • Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (•OH/•O) in aqueous solution. Journal of Physical and Chemical Reference Data, 17, 513–886.

    Article  CAS  Google Scholar 

  • Cao, J., Zhang, W.-X., Brown, D. G., & Sethi, D. (2008). Oxidation of lindane with Fe (II)-activated sodium persulfate. Environmental Engineering Science, 25, 221–228.

    Article  CAS  Google Scholar 

  • Carrier, M., Besson, M., Guillard, C., & Gonze, E. (2009). Removal of herbicide diuron and thermal degradation products under Catalytic Wet Air Oxidation conditions. Applied Catalysis B: Environmental, 91, 275–283.

    Article  CAS  Google Scholar 

  • Chen, W.-S., & Huang, C.-P. (2015). Mineralization of aniline in aqueous solution by electrochemical activation of persulfate. Chemosphere, 125, 175–181.

    Article  CAS  Google Scholar 

  • Chiron, S., Fernandez-Alba, A., Rodriguez, A., & Garcia-Calvo, E. (2000). Pesticide chemical oxidation: state-of-the-art. Water Research, 34, 366–377.

    Article  CAS  Google Scholar 

  • Chu, W., Li, D., Gao, N., Templeton, M. R., Tan, C., & Gao, Y. (2015). The control of emerging haloacetamide DBP precursors with UV/persulfate treatment. Water Research, 72, 340–348.

    Article  CAS  Google Scholar 

  • Furman, O. S., Teel, A. L., & Watts, R. J. (2010). Mechanism of base activation of persulfate. Environmental Science & Technology, 44, 6423–6428.

    Article  CAS  Google Scholar 

  • Gao, N., Chu, W., Zhao, D., & Dong, B. (2009). Removal of the herbicide diuron from drinking water by nanofiltration membrane. Fresenius Environmental Bulletin, 18, 1723–1729.

    CAS  Google Scholar 

  • Govindan, K., Raja, M., Noel, M., & James, E. (2014). Degradation of pentachlorophenol by hydroxyl radicals and sulfate radicals using electrochemical activation of peroxomonosulfate, peroxodisulfate and hydrogen peroxide. Journal of Hazardous Materials, 272, 42–51.

    Article  CAS  Google Scholar 

  • Guardiola, F. A., Cuesta, A., Meseguer, J., & Esteban, M. A. (2012). Risks of using antifouling biocides in aquaculture. International Journal of Molecular Sciences, 13, 1541–1560.

    Article  CAS  Google Scholar 

  • Huovinen, M., Loikkanen, J., Naarala, J., & Vähäkangas, K. (2015). Toxicity of diuron in human cancer cells. Toxicology in Vitro, 29, 1577–1586.

    Article  CAS  Google Scholar 

  • Lakshmanan, D., Clifford, D. A., & Samanta, G. (2009). Ferrous and ferric Ion generation during iron electrocoagulation. Environmental Science & Technology, 43, 3853–3859.

    Article  CAS  Google Scholar 

  • Lin, H., Wu, J., & Zhang, H. (2013). Degradation of bisphenol A in aqueous solution by a novel electro/Fe3+/peroxydisulfate process. Separation and Purification Technology, 117, 18–23.

    Article  CAS  Google Scholar 

  • Luo, C., Ma, J., Jiang, J., Liu, Y., Song, Y., Yang, Y., Guan, Y., & Wu, D. (2015). Simulation and comparative study on the oxidation kinetics of atrazine by UV/H2O2. Water Research, 80, 99–108.

    Article  CAS  Google Scholar 

  • Messeguer, A. (2011). Potential implication of aniline derivatives in the Toxic Oil Syndrome (TOS). Chemico-Biological Interactions, 192, 136–141.

    Article  CAS  Google Scholar 

  • Neta, P., Huie, R. E., & Ross, A. B. (1988). Rate constants for reactions of inorganic radicals in aqueous solution. Journal of Physical and Chemical Reference Data, 17, 1027–1284.

    Article  CAS  Google Scholar 

  • Rastogi, A., Al-Abed, S. R., & Dionysiou, D. D. (2009). Sulfate radical-based ferrous–peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Applied Catalysis B: Environmental, 85, 171–179.

    Article  CAS  Google Scholar 

  • Romero, A., Santos, A., Vicente, F., & González, C. (2010). Diuron abatement using activated persulphate: effect of pH, Fe (II) and oxidant dosage. Chemical Engineering Journal, 162, 257–265.

    Article  CAS  Google Scholar 

  • Sheng, H. L., Lin, C. M., & Leu, H. G. (1999). Operating characteristics and kinetic studies of surfactant wastewater treatment by fenton oxidation. Water Research, 33, 1735–1741.

    Article  Google Scholar 

  • Tan, C., Gao, N., Chu, W., Li, C., & Templeton, M. R. (2012a). Degradation of diuron by persulfate activated with ferrous ion. Separation and Purification Technology, 95, 44–48.

    Article  CAS  Google Scholar 

  • Tan, C., Gao, N., Deng, Y., An, N., & Deng, J. (2012b). Heat-activated persulfate oxidation of diuron in water. Chemical Engineering Journal, 203, 294–300.

    Article  CAS  Google Scholar 

  • Tan, C., Gao, N., Deng, Y., Zhang, Y., Sui, M., Deng, J., & Zhou, S. (2013). Degradation of antipyrine by UV, UV/H2O2 and UV/PS. Journal of Hazardous Materials, 260, 1008–1016.

    Article  CAS  Google Scholar 

  • Usman, M., Tascone, O., Faure, P., & Hanna, K. (2014). Chemical oxidation of hexachlorocyclohexanes (HCHs) in contaminated soils. Science of the Total Environment, 476, 434–439.

    Article  Google Scholar 

  • Vicente, F., Santos, A., Romero, A., & Rodriguez, S. (2011). Kinetic study of diuron oxidation and mineralization by persulphate: effects of temperature, oxidant concentration and iron dosage method. Chemical Engineering Journal, 170, 127–135.

    Article  CAS  Google Scholar 

  • Wacławek, S., Antoš, V., Hrabák, P., Černík, M., & Elliott, D. (2016). Remediation of hexachlorocyclohexanes by electrochemically activated persulfates. Environmental Science and Pollution Research, 23(1), 1–9.

    Article  Google Scholar 

  • Wu, J., Zhang, H., & Qiu, J. (2012). Degradation of Acid Orange 7 in aqueous solution by a novel electro/Fe2+/peroxydisulfate process. Journal of Hazardous Materials, 215, 138–145.

    Article  Google Scholar 

  • Xie, P., Ma, J., Liu, W., Zou, J., Yue, S., Li, X., Wiesner, M. R., & Fang, J. (2015). Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals. Water Research, 69, 223–233.

    Article  CAS  Google Scholar 

  • Xu, X.-R., & Li, X.-Z. (2010). Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion. Separation and Purification Technology, 72, 105–111.

    Article  CAS  Google Scholar 

  • Yu, X.-Y., Bao, Z.-C., & Barker, J. R. (2004). Free radical reactions involving Cl, Cl2-, and SO4-in the 248 nm photolysis of aqueous solutions containing S2O82-and Cl. The Journal of Physical Chemistry. A, 108, 295–308.

    Article  CAS  Google Scholar 

  • Yuan, S., Liao, P., & Alshawabkeh, A. N. (2013). Electrolytic manipulation of persulfate reactivity by iron electrodes for trichloroethylene degradation in groundwater. Environmental Science & Technology, 48, 656–663.

    Article  Google Scholar 

  • Zhao, X., Zhang, B., Liu, H., Chen, F., Li, A., & Qu, J. (2012). Transformation characteristics of refractory pollutants in plugboard wastewater by an optimal electrocoagulation and electro-Fenton process. Chemosphere, 87, 631–636.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation (51508174) and the Central University Basic Scientific Research Business Special Fund Projects (531107040812).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiqing Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Zhou, S., Bu, L. et al. Degradation of Diuron by Electrochemically Activated Persulfate. Water Air Soil Pollut 227, 279 (2016). https://doi.org/10.1007/s11270-016-2978-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2978-9

Keywords

Navigation