Skip to main content
Log in

Effect of Phosphate Loading on the Generation of Extracellular Organic Matters of Microcystis Aeruginosa and Its Derived Disinfection By-Products

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Microcystis aeruginosa is a common cause of algal bloom outbreaks in Chinese lakes. This study investigated the effects of phosphate loading on the algal growth and extracellular organic matter (EOM) production of M. aeruginosa. The cell density was monitored by cell counting, and EOMs were characterized by dissolved organic carbon (DOC), carbohydrate, protein, and excitation/emission matrix fluorescence spectroscopy (EEM). DOC concentration peaked during the stationary phase and was contributed primarily by amino acid- and fulvic-like substances. Carbohydrate was a substantially larger fraction than protein. Phosphate showed positive influence on the cell growth and EOMs. As its concentration increased, the EOMs concentration increased. So did EOM and β-ionone as typical taste and odor compounds. Whatever the phosphate concentration was, the peak of β-ionone concentration exceeded its odor threshold (7.0 ng/L), resulting in a severe fruit-like odor. Additionally, the disinfection by-products involved with EOM were evaluated in both chlorination and chloramination, indicating that trihalomethanes were the dominated toxic by-products and the chloramination showed more significant effect on its formation as an interesting result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

BDHM:

Bromodichloromethane

BCAN:

Bromodichloroacetonitrile

CH:

Chloral hydrate

TCNM:

Trichloronitromethane

DBAN:

Dibromochloroacetonitrile

DBHM:

Dibromochloromethane

DCAN:

Dichloroacetonitrile

DBPs:

Disinfection by-products

DOC:

Dissolved organic carbon

EOMs:

Extracellular organic matters

HKs:

Haloketones

GC:

Gas chromatograph

ECD:

Electron capture detector

HANs:

Haloacetonitriles

M. aeruginosa :

Microcystis aeruginosa

NOMs:

Natural organic matters

SPME:

Solid-phase microextraction

TCAN:

Trichloroacetonitrile

TCHM:

Trichloromethane

THMs:

Trihalomethanes

TBHM:

Tribromethane

1,1,1-TCP:

1,1,1-Trichloro-2-propanone

1,1-DCP:

1,1-Dichloro-2-propanone

References

  • Bougeard, C. M. M., Goslan, E. H., Jefferson, B., & Parsons, S. A. (2010). Comparison of the disinfection by-product formation potential of treated waters exposed to chlorine and monochloramine. Water Research, 44(3), 729–740. doi:10.1016/j.watres.2009.10.008.

    Article  CAS  Google Scholar 

  • Chu, W.-H., Gao, N.-Y., Deng, Y., & Krasner, S. W. (2010). Precursors of dichloroacetamide, an emerging nitrogenous DBP formed during chlorination or chloramination. Environmental Science & Technology, 44(10), 3908–3912. doi:10.1021/es100397x.

    Article  CAS  Google Scholar 

  • Coble, P. G. (1996). Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry, 51(4), 325–346. doi:10.1016/0304-4203(95)00062-3.

    Article  CAS  Google Scholar 

  • Dotson, A., Westerhoff, P., & Krasner, S. W. (2009). Nitrogen enriched dissolved organic matter (DOM) isolates and their affinity to form emerging disinfection by-products. Water Science and Technology, 60(1), 135–143. doi:10.2166/wst.2009.333.

    Article  CAS  Google Scholar 

  • Fang, J., Ma, J., Yang, X., & Shang, C. (2010). Formation of carbonaceous and nitrogenous disinfection by-products from the chlorination of Microcystis aeruginosa. Water Research, 44(6), 1934–1940. doi:10.1016/j.watres.2009.11.046.

    Article  CAS  Google Scholar 

  • Frolund, B., Griebe, T., & Nielsen, P. H. (1995). Enzymatic activity in the activated-sludge floc matrix. Applied Microbiology and Biotechnology, 43(4), 755–761.

    Article  CAS  Google Scholar 

  • Ge, L., Deng, H., Wang, H., Ma, L., & Liu, Y. (2007). Comparison of extraction methods for quantifying extracellular polymers in activated sludges. Fresenius Environmental Bulletin, 16(3), 299–303.

    CAS  Google Scholar 

  • Henderson, R., Parsons, S. A., & Jefferson, B. (2008a). The impact of algal properties and pre-oxidation on solid–liquid separation of algae. Water Research, 42(8–9), 1827–1845. doi:10.1016/j.watres.2007.11.039.

    Article  CAS  Google Scholar 

  • Henderson, R. K., Baker, A., Parsons, S. A., & Jefferson, B. (2008b). Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms. Water Research, 42(13), 3435–3445. doi:10.1016/j.watres.2007.10.032.

    Article  CAS  Google Scholar 

  • Her, N., Amy, G., Park, H. R., & Song, M. (2004). Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling. Water Research, 38(6), 1427–1438. doi:10.1016/j.watres.2003.12.008.

    Article  CAS  Google Scholar 

  • Huang, W.-J., Lai, C.-H., & Cheng, Y.-L. (2007). Evaluation of extracellular products and mutagenicity in cyanobacteria cultures separated from a eutrophic reservoir. Science of the Total Environment, 377(2–3), 214–223. doi:10.1016/j.scitotenv.2007.01.075.

    Article  CAS  Google Scholar 

  • Huang, W., Chu, H., & Dong, B. (2012). Characteristics of algogenic organic matter generated under different nutrient conditions and subsequent impact on microfiltration membrane fouling. Desalination, 293, 104–111. doi:10.1016/j.desal.2012.03.001.

    Article  CAS  Google Scholar 

  • Leloup, M., Nicolau, R., Pallier, V., Yéprémian, C., & Feuillade-Cathalifaud, G. (2013). Organic matter produced by algae and cyanobacteria: quantitative and qualitative characterization. Journal of Environmental Sciences, 25(6), 1089–1097. doi:10.1016/S1001-0742(12)60208-3.

    Article  CAS  Google Scholar 

  • Li, L., Gao, N., Deng, Y., Yao, J., & Zhang, K. (2012). Characterization of intracellular & extracellular algae organic matters (AOM) of Microcystis aeruginosa and formation of AOM-associated disinfection byproducts and odor & taste compounds. [Research Support, Non-U.S. Gov’t]. Water Research, 46(4), 1233–1240. doi:10.1016/j.watres.2011.12.026.

    Article  CAS  Google Scholar 

  • Liao, X., Liu, J., Yang, M., Ma, H., Yuan, B., & Huang, C.-H. (2015). Evaluation of disinfection by-product formation potential (DBPFP) during chlorination of two algae species—blue-green Microcystis aeruginosa and diatom Cyclotella meneghiniana. Science of the Total Environment, 532, 540–547. doi:10.1016/j.scitotenv.2015.06.038.

    Article  CAS  Google Scholar 

  • Liu, Y., Chen, W., Li, D., Huang, Z., Shen, Y., & Liu, Y. (2011). Cyanobacteria-/cyanotoxin-contaminations and eutrophication status before Wuxi drinking water crisis in Lake Taihu, China. Journal of Environmental Sciences-China, 23(4), 575–581. doi:10.1016/s1001-0742(10)60450-0.

    Article  CAS  Google Scholar 

  • Myklestad, S. M. (1995). Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Science of the Total Environment, 165(1–3), 155–164. doi:10.1016/0048-9697(95)04549-G.

    Article  CAS  Google Scholar 

  • Nguyen, M. L., Westerhoff, P., Baker, L., Hu, Q., Esparza-Soto, M., & Sommerfeld, M. (2005). Characteristics and reactivity of algae-produced dissolved organic carbon. Journal of Environmental Engineering-Asce, 131(11), 1574–1582. doi:10.1061/(asce)0733-9372(2005)131:11(1574).

    Article  CAS  Google Scholar 

  • Pan, Y., Zhang, Y., & Sun, S. (2014). Phytoplankton-zooplankton dynamics vary with nutrients: a microcosm study with the cyanobacterium Coleofasciculus chthonoplastes and cladoceran Moina micrura. Journal of Plankton Research, 36(5), 1323–1332. doi:10.1093/plankt/fbu057.

    Article  CAS  Google Scholar 

  • Park, J. B. K., Craggs, R. J., & Shilton, A. N. (2013). Investigating why recycling gravity harvested algae increases harvestability and productivity in high rate algal ponds. Water Research, 47(14), 4904–4917. doi:10.1016/j.watres.2013.05.027.

    Article  CAS  Google Scholar 

  • Pivokonsky, M., Safarikova, J., Baresova, M., Pivokonska, L., & Kopecka, I. (2014). A comparison of the character of algal extracellular versus cellular organic matter produced by cyanobacterium, diatom and green alga. Water Research, 51, 37–46. doi:10.1016/j.watres.2013.12.022.

    Article  CAS  Google Scholar 

  • Pivokonsky, M., Naceradska, J., Kopecka, I., Baresova, M., Jefferson, B., Li, X., et al. (2016). The impact of algogenic organic matter on water treatment plant operation and water quality: a review. Critical Reviews in Environmental Science and Technology, 46(4), 291–335. doi:10.1080/10643389.2015.1087369.

    Article  CAS  Google Scholar 

  • Sharp, E. L., Parson, S. A., & Jefferson, B. (2006). Coagulation of NOM: linking character to treatment. Water Science and Technology, 53(7), 67–76. doi:10.2166/wst.2006.209.

    Article  CAS  Google Scholar 

  • Shriwastav, A., Gupta, S. K., Ansari, F. A., Rawat, I., & Bux, F. (2014). Adaptability of growth and nutrient uptake potential of Chlorella sorokiniana with variable nutrient loading. Bioresource Technology, 174, 60–66. doi:10.1016/j.biortech.2014.09.149.

    Article  CAS  Google Scholar 

  • Villacorte, L. O., Ekowati, Y., Neu, T. R., Kleijn, J. M., Winters, H., Amy, G., et al. (2015). Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae. Water Research, 73, 216–230. doi:10.1016/j.watres.2015.01.028.

    Article  CAS  Google Scholar 

  • Zhang, X.-J., Chen, C., Ding, J.-Q., Hou, A., Li, Y., Niu, Z.-B., et al. (2010). The 2007 water crisis in Wuxi, China: analysis of the origin. Journal of Hazardous Materials, 182(1–3), 130–135. doi:10.1016/j.jhazmat.2010.06.006.

    Article  CAS  Google Scholar 

  • Zhou, S., Shao, Y., Gao, N., Deng, Y., Li, L., Deng, J., et al. (2014). Characterization of algal organic matters of Microcystis aeruginosa: biodegradability, DBP formation and membrane fouling potential. Water Research, 52, 199–207. doi:10.1016/j.watres.2014.01.002.

    Article  CAS  Google Scholar 

  • Zhou, S., Zhu, S., Shao, Y., & Gao, N. (2015). Characteristics of C-, N-DBPs formation from algal organic matter: role of molecular weight fractions and impacts of pre-ozonation. Water Research, 72, 381–390. doi:10.1016/j.watres.2014.11.023.

    Article  CAS  Google Scholar 

  • Zhu, M., Gao, N., Chu, W., Zhou, S., Zhang, Z., Xu, Y., et al. (2015). Impact of pre-ozonation on disinfection by-product formation and speciation from chlor(am)ination of algal organic matter of Microcystis aeruginosa. Ecotoxicology and Environmental Safety, 120, 256–262. doi:10.1016/j.ecoenv.2015.05.048.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out with the support of Fundamental Research Funds for the Central Universities (No. 2015ZCQ-HJ-02) and the National Natural Science Foundation of China (Nos. 51578520, 51378063, 41273137, and 51108030) and Beijing Natural Science Foundation (No. L160006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bingbing Xu or Fei Qi.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 135 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Xu, B. & Qi, F. Effect of Phosphate Loading on the Generation of Extracellular Organic Matters of Microcystis Aeruginosa and Its Derived Disinfection By-Products. Water Air Soil Pollut 227, 264 (2016). https://doi.org/10.1007/s11270-016-2976-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2976-y

Keywords

Navigation