Skip to main content

Advertisement

Log in

Bioelectricity Generation in Batch-Fed Up-Flow Membrane-Less Microbial Fuel Cell: Effect of Surface Morphology of Carbon Materials as Aqeuous Biocathodes

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The surface morphology of biocathode was one of the limiting factors for microbial fuel cell (MFC) design. Up-flow membrane-less single-chambered MFC (UFML MFC) was used to investigate the effect of surface morphology of carbon material as aqueous biocathode. Pt-loaded carbon paper, carbon felt, and carbon plate were examined and compared on the power output, surface morphology for biofilm formation, Coulombic efficiency (CE), and chemical oxygen demand (COD) reduction. The COD reduction was up to 90 % in UFML MFC with Pt-loaded carbon paper, carbon felt, and carbon plate as aqueous biocathodes. The results obtained showed that the performance in voltage output was not related to internal resistance but mainly due to the ability of cathode material in oxygen reduction process. The performance of voltage output with different materials as aqueous biocathode was mainly based on to the surface morphology as it was related to the ability of biofilm formation. Roughness of aqueous biocathode’s surface morphology could prompt the biofilm growth, while biofilm overgrowth on aqueous biocathode could decrease voltage output. Therefore, smoother surface morphology of aqueous biocathode is more suitable for long-term operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad, F., Atiyeh, M. N., Pereira, B., & Stephanopoulos, G. N. (2013). A review of cellulosic microbial fuel cells: performance and challenges. Biomass Bioenergy, 56, 179–188. doi:10.1016/j.biombioe.2013.04.006.

    Article  CAS  Google Scholar 

  • Akman, D., Cirik, K., Ozdemir, S., Ozkaya, B., & Cinar, O. (2013). Bioelectricity generation in continuously-fed microbial fuel cell: effects of anode electrode material and hydraulic retention time. Bioresour Technol, 149, 459–464. doi:10.1016/j.biortech.2013.09.102.

    Article  CAS  Google Scholar 

  • Behera, M., Jana, P. S., & Ghangrekar, M. M. (2010). Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode. Bioresour Technol, 101(4), 1183–1189. doi:10.1016/j.biortech.2009.07.089.

    Article  CAS  Google Scholar 

  • Clauwaert, P., Van Der Ha, D., Boon, N., Verbeken, K., Verhaege, M., Rabaey, K., & Verstraete, W. (2007). Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol, 41(21), 7564–7569. doi:10.1021/es0709831.

    Article  CAS  Google Scholar 

  • Deng, Q., Li, X., Zuo, J., Ling, A., & Logan, B. E. (2010). Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. J Power Sources, 195(4), 1130–1135. doi:10.1016/j.jpowsour.2009.08.092.

    Article  CAS  Google Scholar 

  • Gajda, I., Greenman, J., Melhuish, C., Santoro, C., Li, B., Cristiani, P., & Ieropoulos, I. (2014). Water formation at the cathode and sodium recovery using microbial fuel cells (MFCs). Sustainable Energy Technologies and Assessments, 7, 187–194. doi:10.1016/j.seta.2014.05.001.

    Article  Google Scholar 

  • Ghasemi, M., Daud, W. R. W., Hassan, S. H. A., Oh, S.-E., Ismail, M., Rahimnejad, M., & Jahim, J. M. (2013). Nano-structured carbon as electrode material in microbial fuel cells: a comprehensive review. J Alloys Compd, 580, 245–255. doi:10.1016/j.jallcom.2013.05.094.

    Article  CAS  Google Scholar 

  • Gil, G., Chang, I., Kim, B. H., Kim, M., Jang, J., Park, H. S., & Kim, H. J. (2003). Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens Bioelectron, 18, 327–334.

    Article  CAS  Google Scholar 

  • Han, J.-L., Wang, C.-T., Hu, Y.-C., Liu, Y., Chen, W.-M., Chang, C.-T., et al. (2010). Exploring power generation of single-chamber microbial fuel cell using mixed and pure cultures. Journal of the Taiwan Institute of Chemical Engineers, 41(5), 606–611. doi:10.1016/j.jtice.2009.12.002.

    Article  CAS  Google Scholar 

  • Huggins, T., Wang, H., Kearns, J., Jenkins, P., & Ren, Z. J. (2014). Biochar as a sustainable electrode material for electricity production in microbial fuel cells. Bioresour Technol, 157, 114–119. doi:10.1016/j.biortech.2014.01.058.

    Article  CAS  Google Scholar 

  • Jana, P. S., Behera, M., & Ghangrekar, M. M. (2010). Performance comparison of up-flow microbial fuel cells fabricated using proton exchange membrane and earthen cylinder. Int J Hydrog Energy, 35(11), 5681–5686. doi:10.1016/j.ijhydene.2010.03.048.

    Article  CAS  Google Scholar 

  • Janicek, A., Fan, Y., & Liu, H. (2015). Performance and stability of different cathode base materials for use in microbial fuel cells. J Power Sources, 280, 159–165. doi:10.1016/j.jpowsour.2015.01.098.

    Article  CAS  Google Scholar 

  • Karra, U., Manickam, S. S., McCutcheon, J. R., Patel, N., & Li, B. (2013). Power generation and organics removal from wastewater using activated carbon nanofiber (ACNF) microbial fuel cells (MFCs). Int J Hydrog Energy, 38(3), 1588–1597. doi:10.1016/j.ijhydene.2012.11.005.

    Article  CAS  Google Scholar 

  • Kiely, P. D., Rader, G., Regan, J. M., & Logan, B. E. (2011). Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts. Bioresour Technol, 102(1), 361–366. doi:10.1016/j.biortech.2010.05.017.

    Article  CAS  Google Scholar 

  • Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., et al. (2006). Microbial fuel cells: methodology and technology†. Environmental Science & Technology, 40(17), 5181–5192. doi:10.1021/es0605016.

    Article  CAS  Google Scholar 

  • Logan, B. E., Murano, C., Scott, K., Gray, N. D., & Head, I. M. (2005). Electricity generation from cysteine in a microbial fuel cell. Water Res, 39(5), 942–952. doi:10.1016/j.watres.2004.11.019.

    Article  CAS  Google Scholar 

  • Lu, N., Zhou, S., Zhuang, L., Zhang, J., & Ni, J. (2009). Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochem Eng J, 43(3), 246–251. doi:10.1016/j.bej.2008.10.005.

    Article  CAS  Google Scholar 

  • Quan, X. C., Quan, Y. P., & Tao, K. (2012). Effect of anode aeration on the performance and microbial community of an air-cathode microbial fuel cell. Chem Eng J, 210, 150–156. doi:10.1016/j.cej.2012.09.009.

    Article  CAS  Google Scholar 

  • Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol, 23(6), 291–298. doi:10.1016/j.tibtech.2005.04.008.

    Article  CAS  Google Scholar 

  • ter Heijne, A., Hamelers, H. V. M., Saakes, M., & Buisman, C. J. N. (2008). Performance of non-porous graphite and titanium-based anodes in microbial fuel cells. Electrochim Acta, 53(18), 5697–5703. doi:10.1016/j.electacta.2008.03.032.

    Article  Google Scholar 

  • Thung, W.-E., Ong, S.-A., Ho, L.-N., Wong, Y.-S., Oon, Y.-L., Oon, Y.-S., & Lehl, H. K. (2015). Simultaneous wastewater treatment and power generation with innovative design of an upflow membrane-less microbial fuel cell. Water Air Soil Pollut, 226(5), 165. doi:10.1007/s11270-015-2410-x.

    Article  Google Scholar 

  • Tsai, H.-Y., Wu, C.-C., Lee, C.-Y., & Shih, E. P. (2009). Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes. J Power Sources, 194(1), 199–205. doi:10.1016/j.jpowsour.2009.05.018.

    Article  CAS  Google Scholar 

  • Venkata Mohan, S., Velvizhi, G., Annie Modestra, J., & Srikanth, S. (2014). Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renew Sust Energ Rev, 40, 779–797. doi:10.1016/j.rser.2014.07.109.

    Article  CAS  Google Scholar 

  • Wang, H., Jiang, S. C., Wang, Y., & Xiao, B. (2013). Substrate removal and electricity generation in a membrane-less microbial fuel cell for biological treatment of wastewater. Bioresour Technol, 138, 109–116. doi:10.1016/j.biortech.2013.03.172.

    Article  CAS  Google Scholar 

  • Wei, J., Liang, P., & Huang, X. (2011). Recent progress in electrodes for microbial fuel cells. Bioresour Technol, 102(20), 9335–9344. doi:10.1016/j.biortech.2011.07.019.

    Article  CAS  Google Scholar 

  • Wu, Y., Zhang, X., Li, S., Lv, X., Cheng, Y., & Wang, X. (2013). Microbial biofuel cell operating effectively through carbon nanotube blended with gold–titania nanocomposites modified electrode. Electrochim Acta, 109, 328–332. doi:10.1016/j.electacta.2013.07.166.

    Article  CAS  Google Scholar 

  • Zhang, F., Pant, D., & Logan, B. E. (2011a). Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells. Biosensors & bioelectronics, 30(1), 49–55. doi:10.1016/j.bios.2011.08.025.

    Google Scholar 

  • Zhang, X., He, W., Ren, L., Stager, J., Evans, P. J., & Logan, B. E. (2015). COD removal characteristics in air-cathode microbial fuel cells. Bioresour Technol, 176, 23–31. doi:10.1016/j.biortech.2014.11.001.

    Article  CAS  Google Scholar 

  • Zhang, Y., Sun, J., Hou, B., & Hu, Y. (2011b). Performance improvement of air-cathode single-chamber microbial fuel cell using a mesoporous carbon modified anode. J Power Sources, 196(18), 7458–7464. doi:10.1016/j.jpowsour.2011.05.004.

    Article  CAS  Google Scholar 

  • Zhang, Y., Sun, J., Hu, Y., Li, S., & Xu, Q. (2012). Bio-cathode materials evaluation in microbial fuel cells: a comparison of graphite felt, carbon paper and stainless steel mesh materials. Int J Hydrog Energy, 37(22), 16935–16942. doi:10.1016/j.ijhydene.2012.08.064.

    Article  CAS  Google Scholar 

  • Zhou, M., Chi, M., Luo, J., He, H., & Jin, T. (2011). An overview of electrode materials in microbial fuel cells. J Power Sources, 196(10), 4427–4435. doi:10.1016/j.jpowsour.2011.01.012.

    Article  CAS  Google Scholar 

  • Zou, Y., Xiang, C., Yang, L., Sun, L.-X., Xu, F., & Cao, Z. (2008). A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material. Int J Hydrog Energy, 33(18), 4856–4862. doi:10.1016/j.ijhydene.2008.06.061.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Ministry of Science, Technology and Innovation (MOSTI) ScienceFund (Grant No.02-01-15-SF0201). The authors are grateful for the supply of carbon felt (SG-222) by Maido Corporation, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-An Ong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thung, WE., Ong, SA., Ho, LN. et al. Bioelectricity Generation in Batch-Fed Up-Flow Membrane-Less Microbial Fuel Cell: Effect of Surface Morphology of Carbon Materials as Aqeuous Biocathodes. Water Air Soil Pollut 227, 254 (2016). https://doi.org/10.1007/s11270-016-2961-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2961-5

Keywords

Navigation