Skip to main content

Advertisement

Log in

Anomalous Increase in Winter Temperature and Decline in Forest Growth Associated with Severe Winter Smog in the Ulan Bator Basin

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A dramatic increase in winter (December–February) temperature by 7.2 K (1.1 K per decade) since 1950 has occurred in the Ulan Bator basin, Mongolia. This increase in temperature strongly exceeds the global average of late twentieth century warming and even exceeds warming in most of the polar regions with pronounced increases in temperature. The exceptional warming is restricted to Ulan Bator within the Mongolian forest-steppe region and to wintertime. This suggests that the observed warming could result from radiative forcing by black carbon aerosols. In winter, Ulan Bator’s air is heavily polluted by particulate matter, including black carbon, originating from the combustion of low-quality fuel at low temperature. Winter smog has strongly increased in recent decades, concomitant to the increase in winter temperature, as the result of a strong increase in the city’s population. Exponential growth of Ulan Bator’s population started in the mid-twentieth century, but since 1990, altered socioeconomic frame conditions and a warming climate have driven more than 700,000 pastoralists from rural Mongolia to Ulan Bator where people live in provisional dwellings and cause Ulan Bator’s heavy air pollution. Tree-ring analysis from larch trees growing at the edge of the Ulan Bator basin shows negative correlation of stem increment with December temperature. This result suggests that milder winters promote herbivores and, thus, reduce the tree’s productivity. The negative impact of winter warming on the larch forests adds to adverse effects of summer drought and the impact of high sulfur dioxide emissions. Winter warming putatively associated with high atmospheric concentrations of black carbon aerosols in the Ulan Bator basin is an interesting example of a case where greenhouse gas-mediated climate warming in an area where people themselves hardly contribute to global greenhouse gas emissions affects both humans and ecosystems and causes additional local climate warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen, R. W., Gombojav, E., Barkhasragchaa, B., et al. (2013). An assessment of air pollution and its attributable mortality in Ulaanbaatar, Mongolia. Air Quality, Atmosphere and Health, 6, 137–150.

    Article  CAS  Google Scholar 

  • Amarsaikhan, D., Chinbat, B., Ganzorig, M., Battsengel, V., Bulgan, G., Nergui, B., Egshiglen, E., & Gantuya, R. (2011). Applications of remote sensing (RS) and geographical information system (GIS) for urban and land use change study in Ulaanbaatar City, Mongolia. Journal of Geography and Regional Planning, 4, 471–481.

    Google Scholar 

  • Anisimov, O. A., & Zhiltsova, E. L. (2012). Climate change estimates for the regions of Russia in the 20th century and in the beginning of the 21st century based on the observational data. Russian Meteorology and Hydrology, 37, 421–429.

    Article  Google Scholar 

  • Arguchintseva, A. V., Arguchintsev, V. K., & Ubonova, L. V. (2008). Modeling of the distribution of anthropogenic pollutants in the atmospheric boundary layer of the city of Ulan Bator. Geography and Natural Resources, 29, 146–149.

    Article  Google Scholar 

  • Batmunkh, T., Kim, Y. J., Jung, J. S., Park, K., & Tumendemberel, B. (2013). Chemical characteristics of fine particulate matters measured during severe winter haze events in Ulaanbaatar, Mongolia. Journal of the Air and Waste Management Association, 63, 659–670.

    Article  CAS  Google Scholar 

  • Begzsuren, S., Ellis, J. E., Ojima, D. S., Coughenour, M. B., & Chuluun, T. (2004). Livestock responses to droughts and severe winter weather in the Gobi Three Beauty National Park, Mongolia. Journal of Arid Environments, 59, 785–796.

    Article  Google Scholar 

  • Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J.-H., & Klimont, Z. (2004). A technology-based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research, 109, D14203. doi:10.1029/2003JD003697.

    Article  Google Scholar 

  • Bowman, K. P., & Cohen, P. J. (1997). Interhemispheric exchange by seasonal modulation of the Hadley circulation. Journal of the Atmospheric Sciences, 54, 2045–2059.

    Article  Google Scholar 

  • Box, J. E. (2002). Survey of Greenland instrumental temperature records: 1873–2001. International Journal of Climatology, 22, 1829–1847.

    Article  Google Scholar 

  • Caldieron, J. M. (2013). Ger districts in Ulaanbaatar, Mongolia: housing and living condition surveys. International Journal of Innovation and Applied Studies, 4, 465–476.

    Google Scholar 

  • Cao, G., Zhang, X., & Zheng, F. (2006). Inventory of black carbon and organic carbon emissions from China. Atmospheric Environment, 40, 6516–6527.

    Article  CAS  Google Scholar 

  • Chung, S. H., & Seinfeld, J. H. (2002). Global distribution and climate forcing of carbonaceous aerosols. Journal of Geophysical Research, 107, 4407. doi:10.1029/2001JD001397.

    Article  Google Scholar 

  • Dagvadorj, D., Natsagdorj, L., Dorjpurev, J., & Namkhainyam, B. (2009). Mongolian assessment report on climate change 2009. Ulan Bator: Ministry of Environment, Nature and Tourism, Mongolia.

    Google Scholar 

  • D’Arrigo, R., Jacoby, G., Pederson, N., Frank, D., Buckley, B., Baatarbileg, N., Mijiddorj, R., & Dugarjav, C. (2000). Mongolian tree-rings, temperature sensitivity and reconstructions of northern hemisphere temperature. Holocene, 10, 669–672.

    Article  Google Scholar 

  • De Grandpré, L., Tardif, J. C., Hessl, A., Pederson, N., Conciatori, F., Green, T. R., Oyunsanaa, B., & Baatarbileg, N. (2011). Seasonal shift in the climate responses of Pinus sibirica, Pinus sylvestris, and Larix sibirica trees from semi-arid, north central Mongolia. Canadian Journal of Forest Research, 41, 1242–1255.

    Article  Google Scholar 

  • Dulamsuren, C., Hauck, M., Leuschner, H. H., & Leuschner, C. (2010a). Gypsy moth-induced growth decline of Larix sibirica in a forest-steppe ecotone. Dendrochronologia, 28, 207–213.

    Article  Google Scholar 

  • Dulamsuren, C., Hauck, M., & Leuschner, C. (2010b). Recent drought stress leads to growth reductions in Larix sibirica in the western Khentey, Mongolia. Global Change Biology, 16, 3024–3035.

    Google Scholar 

  • Dulamsuren, C., Hauck, M., Leuschner, H. H., & Leuschner, C. (2011). Climate response of tree-ring width in Larix sibirica growing in the drought-stressed forest-steppe ecotone of northern Mongolia. Annals of Forest Science, 68, 275–282.

    Article  Google Scholar 

  • Dulamsuren, C., Wommelsdorf, T., Zhao, F., Xue, Y., Zhumadilov, B. Z., Leuschner, C., & Hauck, M. (2013). Increased summer temperatures reduce the growth and regeneration of Larix sibirica in southern boreal forests of eastern Kazakhstan. Ecosystems, 16, 1536–1549.

    Article  CAS  Google Scholar 

  • Dulamsuren, C., Khishigjargal, M., Leuschner, C., & Hauck, M. (2014). Response of tree-ring width to climate warming and selective logging in larch forests of the Mongolian Altai. Journal of Plant Ecology, 7, 24–38.

    Article  Google Scholar 

  • Dulamsuren, C., Klinge, M., Degener, J., Khishigjargal, M., Chenlemuge, T., Bat-Enerel, B., Yeruult, Y., Sain-Dondov, D., Ganbaatar, K., Tsogtbaatar, J., Leuschner, C., & Hauck, M. (2016). Carbon pool densities and a first estimate of the total carbon pool in the Mongolian forest-steppe. Global Change Biology, 22, 830–844.

    Article  Google Scholar 

  • Estrada, F., Perron, P., & Martínez-López, B. (2013). Statistically derived contributions of diverse human influences to twentieth-century temperature changes. Nature Geoscience, 6, 1050–1055.

    Article  CAS  Google Scholar 

  • Fernández-Giménez, M., Batjav, B., & Baival, B. (2012). Lessons from the Dzud: adaptation and resilience in Mongolian pastoral socio-ecological systems. Washington DC: World Bank.

    Google Scholar 

  • Ganbat, G., Han, J.-Y., Ryu, Y.-H., & Baik, J.-J. (2013). Characteristics of the urban heat island in a high-altitude metropolitan city, Ulaanbaatar, Mongolia. Asia-Pacific Journal of Atmospheric Sciences, 49, 535–541.

    Article  Google Scholar 

  • Giorgi, F. (2006). Climate change hot-spots. Geophysical Research Letters, 33, L08707. doi:10.1029/2006GL025734.

    Article  Google Scholar 

  • Gottfried, M., Pauli, H., Futschik, A., et al. (2012). Continent-wide response of mountain vegetation to climate change. Nature Climate Change, 2, 111–115.

    Article  Google Scholar 

  • Guemas, V., Doblas-Reyes, F. J., Andreu-Burillo, I., & Asif, A. (2013). Retrospective prediction of the global warming slowdown in the past decade. Nature Climate Change, 3, 649–653.

    Article  Google Scholar 

  • Gunin, P. D., Vostokova, E. A., Dorofeyuk, N. I., Tarasov, P. E., & Black, C. C. (1999). Vegetation dynamics of Mongolia. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Gurk, C., Fischer, H., Hoor, P., Lawrence, M. G., Lelieveld, J., & Wernlo, H. (2008). Airborne in-situ measurements of vertical, seasonal and latitudinal distributions of carbon dioxide over Europe. Atmospheric Chemistry and Physics, 8, 6395–6403.

    Article  CAS  Google Scholar 

  • Hansen, J., & Lebedeff, S. (1987). Global trends of measured air temperature. Journal of Geophysical Research, 92, 13345–13372.

    Article  Google Scholar 

  • Hauck, M. (2008). Epiphytic lichens indicate recent increase in air pollution in the Mongolian capital Ulan Bator. Lichenologist, 40, 165–168.

    Article  Google Scholar 

  • Hauck, M., Dulamsuren, C., & Heimes, C. (2008). Effects of a gypsy moth invasion on the performance of Larix sibirica in a forest-steppe ecotone of northern Mongolia. Environmental and Experimental Botany, 62, 351–356.

    Article  Google Scholar 

  • Hauck, M., Dulamsuren, C., Bayartogtokh, B., Ulykpan, K., Burkitbaeva, U. D., Otgonjargal, E., Titov, S. V., Enkhbayar, T., Sundetpaev, A. K., Beket, U., & Leuschner, C. (2014). Relationships between the diversity patterns of vascular plants, lichens and invertebrates in the Central Asian forest-steppe ecotone. Biodiversity and Conservation, 23, 1105–1117.

    Article  Google Scholar 

  • IPCC. (2013). Working Group I to the IPCC Fifth Assessment Report Climate Change 2013: the Physical Science Basis. Final Draft Underlying Scientific-Technical Assessment. Geneva: Intergovernmental Panel on Climate Change.

    Google Scholar 

  • Jacoby, G. C., D’Arrigo, R. D., & Davaajamts, T. (1996). Mongolian tree-rings and 20th-century warming. Science, 273, 771–773.

    Article  CAS  Google Scholar 

  • Jacobson, M. Z. (2001). Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409, 695–697.

    Article  CAS  Google Scholar 

  • Jacoby, G. C., Lovelius, N. V., Shumilov, O. I., Raspopov, O. M., Karbainov, J. M., & Frank, D. C. (2000). Long-term temperature trends and tree growth in the Taimyr region of northern Siberia. Quaternary Research, 53, 312–318.

    Article  Google Scholar 

  • Janzen, J. (2005). Mobile livestock-keeping in Mongolia: present problems, spatial organization, interactions between mobile and sedentary population groups and perspectives for pastoral development. Senri Ethnological Studies, 69, 69–97.

    Google Scholar 

  • Jung, J. S., Batmunkh, T., Kim, Y. J., & Kawamura, K. (2010). Organic and inorganic aerosol compositions in Ulaanbaatar, Mongolia, during the cold winter of 2007 to 2008: dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls. Journal of Geophysical Research, 115, D22203. doi:10.1029/2010JD014339.

    Article  Google Scholar 

  • Kai, F. M., Tyler, S. C., Randerson, J. T., & Blake, D. R. (2011). Reduced methane growth rate explained by decreased Northern Hemisphere microbial sources. Nature, 476, 194–197.

    Article  CAS  Google Scholar 

  • Khishigjargal, M., Dulamsuren, C., Leuschner, H. H., Leuschner, C., & Hauck, M. (2014). Climate effects on inter- and intra-annual larch stemwood anomalies in the Mongolian forest-steppe. Acta Oecologica, 55, 113–121.

    Article  Google Scholar 

  • Kravchenko, V. O., Evtushesky, O. M., Grytsai, A. V., & Milinevsky, G. P. (2011). Decadal variability of winter temperatures in the Antarctic Peninsula region. Antarctic Science, 23, 614–622.

    Article  Google Scholar 

  • Lkhagvadorj, D., Hauck, M., Dulamsuren, C., & Tsogtbaatar, J. (2013a). Twenty years after decollectivization: mobile livestock husbandry and its ecological impact in the Mongolian forest-steppe. Human Ecology, 41, 725–735.

    Article  Google Scholar 

  • Lkhagvadorj, D., Hauck, M., Dulamsuren, C., & Tsogtbaatar, J. (2013b). Pastoral nomadism in the forest-steppe of the Mongolian Altai under a changing economy and a warming climate. Journal of Arid Environments, 88, 82–89.

    Article  Google Scholar 

  • Liu, H., Williams, A. P., Allen, C. D., Guo, D., Wu, X., Anenkhonov, O. A., Liang, E. Y., Sandanov, D. V., Yin, Y., Qi, Z., & Badmaeva, N. K. (2013). Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia. Global Change Biology, 19, 2500–2510.

    Article  Google Scholar 

  • McGrath, D., Colgan, W., Bayou, N., Muto, A., & Steffen, K. (2013). Recent warming at Summit, Greenland: global context and implications. Geophysical Research Letters, 40, doi: 10.1002/grl.50456

  • Meehl, G. A., Arblaster, J. M., & Collins, W. D. (2008). Effects of black carbon aerosols on the Indian Monsoon. Journal of Climate, 21, 2869–2882.

    Article  Google Scholar 

  • Menon, S., Hansen, J., Nazarenko, L., & Luo, Y. (2002). Climate effects of black carbon aerosols in China and India. Science, 297, 2250–2253.

    Article  CAS  Google Scholar 

  • Menon, S., Koch, D., Beig, G., Sahu, S., Fasullo, J., & Orlikowski, D. (2010). Black carbon aerosols and the third polar ice cap. Atmospheric Chemistry and Physics, 10, 4559–4571.

    Article  CAS  Google Scholar 

  • Meredith, M. P., & King, J. C. (2005). Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophysical Research Letters, 32, L19604. doi:10.1029/2005GL024042.

    Google Scholar 

  • Novakov, T., Ramanathan, V., Hansen, J. E., Kirchstetter, T. W., Sato, M., Sinton, J. E., & Sathaye, J. A. (2003). Large historical changes of fossil-fuel black carbon aerosols. Geophysical Research Letters, 30, 1324. doi:10.1029/2002GL016345.

    Article  Google Scholar 

  • Patra, P. K., Takigawa, M., Dutton, G. S., Uhse, K., Ishijima, K., Lintner, B. R., Miyazaki, K., & Elkins, J. W. (2009). Transport mechanisms for synoptic, seasonal and interannual SF6 variations and “age” of air in the troposphere. Atmospheric Chemistry and Physics, 9, 1209–1225.

    Article  CAS  Google Scholar 

  • Peck, L. S., Webb, K. E., & Bailey, D. M. (2004). Extreme sensitivity of biological function to temperature in Antarctic marine species. Functional Ecology, 18, 625–630.

    Article  Google Scholar 

  • Ramanathan, V., & Carmichael, G. (2008). Global and regional climate changes due to black carbon. Nature Geoscience, 1, 221–227.

    Article  CAS  Google Scholar 

  • Shabbar, A., & Yu, B. (2009). The 1998–2000 La Niña in the context of historically strong La Niña events. Journal Geophysical Research, 114, D13105. doi:10.1029/2008JD011185.

    Article  Google Scholar 

  • Sneath, D. (2004). Proprietary regimes and sociotechnical systems: rights over land in Mongolia’s ‘Age of the Market’. In K. Verdery & C. Humphrey (Eds.), Property in question: value transformation in the global economy (pp. 161–182). Oxford: Berg.

    Google Scholar 

  • Steig, E. J., Schneider, D. P., Rutherford, S. D., Mann, M. E., Comiso, J. C., & Shindell, D. T. (2009). Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457, 459–662.

    Article  CAS  Google Scholar 

  • Sternberg, T., Middleton, N., & Thomas, D. S. G. (2009). Pressurized pastoralism in South Gobi Province, Mongolia: what is the role of drought? Transactions of British Geographers, 34, 364–377.

    Article  Google Scholar 

  • Streets, D. G., Gupta, S., Waldhoff, S. T., Wang, M. Q., Bond, T. C., & Yiyun, B. (2001). Black carbon emissions in China. Atmospheric Environment, 35, 4281–4292.

    Article  CAS  Google Scholar 

  • Tachiiri, K., Shinoda, M., Klinkenberg, B., & Morinaga, Y. (2008). Assessing Mongolian snow disaster risk using livestock and satellite data. Journal of Arid Environments, 72, 2251–2263.

    Article  Google Scholar 

  • Tei, S., Sugimoto, A., Yonenobu, H., Ohta, T., & Maximov, T. C. (2014). Growth and physiological responses of larch trees to climate changes deduced from tree-ring widths and δ13C at two forest sites in eastern Siberia. Polar Science, 8, 183–195.

    Article  Google Scholar 

  • Trenberth, K. E., & Fasullo, J. T. (2013). An apparent hiatus in global warming? Earth’s Future, 1, 19–32.

    Article  Google Scholar 

  • Vaughan, D. G., Marshall, G. J., Connolley, W. M., Parkinson, C., Mulvaney, R., Hodgson, D. A., King, J. C., Pudsey, C. J., & Turner, J. (2003). Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change, 60, 243–274.

    Article  Google Scholar 

  • Waggoner, P. E. (1985). How gypsy moth eggs freeze. Agricultural and Forest Meteorology, 36, 43–53.

    Article  Google Scholar 

  • Watanabe, M., Shiogama, H., Tatebe, H., Hayashi, M., Ishii, M., & Kimoto, M. (2014). Contribution of natural variability to global warming acceleration and hiatus. Nature Climate Change, 4, 893–897.

    Article  Google Scholar 

  • Williams, D. W., Fuester, R. W., Metterhouse, W. W., Balaam, R. J., Bullock, R. H., Chianese, R. J., & Reardon, R. C. (1990). Density, size and mortality of egg masses in New Jersey of the gypsy moth (Lepidoptera: Lymantriidae). Environmental Entomology, 19, 943–948.

    Article  Google Scholar 

  • World Bank. (2011). Air quality analysis of Ulaanbaatar. Improving air quality to reduce health impacts. Washington DC: World Bank.

    Google Scholar 

Download references

Acknowledgments

The study was supported by a grant from the Volkswagen Foundation (no. 87 175) to M. Hauck, Ch. Dulamsuren, and Ch. Leuschner. Field work for tree-ring sampling was funded with a grant of the German Science Foundation (Deutsche Forschungsgemeinschaft) to C.D. (Du 1145/1-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Hauck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hauck, M., Dulamsuren, C. & Leuschner, C. Anomalous Increase in Winter Temperature and Decline in Forest Growth Associated with Severe Winter Smog in the Ulan Bator Basin. Water Air Soil Pollut 227, 261 (2016). https://doi.org/10.1007/s11270-016-2957-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2957-1

Keywords

Navigation