Skip to main content
Log in

Adsorption Behavior and Removal Mechanism of Arsenic from Water by Fe(III)-Modified 13X Molecular Sieves

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Presented are the synthesis and characterization of Fe(III)-modified 13X molecular sieves and their application as a novel adsorbent for removing arsenic from aqueous solutions. Batch experimental results showed that Fe(III) adsorption by 13X molecular sieves matched well with the Langmuir adsorption isotherm. The adsorption kinetics of arsenic on the Fe(III)-modified molecular sieves fit well with a pseudo-second-order model. The Langmuir adsorption isotherms of arsenic adsorption indicated the highest adsorption capacities of 1167.79 for As(V) at pH 4 and 731.56 mg/kg for As(III) at pH 9. The Fe(III)-modified 13X molecular sieves removed much more As(V) than As(III) at equivalent arsenic concentrations, regardless of the pH conditions. After As(V) removal, the Fe(III)-modified 13X molecular sieves were characterized by PXRD, SEM-EDX, and ATR-FTIR to analyze the morphology and arsenic speciation. The results of PXRD and SEM-EDX spectroscopy indicated that the material was physically stable after As(V) adsorption. ATR-FTIR spectroscopy showed that the formation of inner-sphere surface complexations between Fe hydroxide on the surface of the molecular sieves and As(V) could be a plausible mechanism for the uptake of arsenic by the Fe(III)-modified 13X molecular sieves. Therefore, the relatively low cost and remarkable arsenic-adsorption performance make the title material a promising absorbent for the treatment of arsenic in wastewater.

Arsenic removal by Fe(III)-modified 13X molecular sieves

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baskan, M. B., & Pala, A. (2013). Batch and fixed-bed column studies of arsenic adsorption on the natural and modified clinoptilolite. Water, Air, & Soil Pollution, 225, 1798.

    Article  Google Scholar 

  • Catalano, J. G., Park, C., Fenter, P., & Zhang, Z. (2008). Simultaneous inner- and outer-sphere arsenate adsorption on corundum and hematite. Geochimica et Cosmochimica Acta, 72, 1986–2004.

    Article  CAS  Google Scholar 

  • Dixit, S., & Hering, J. G. (2003). Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environmental Science and Technology, 37, 4182–4189.

    Article  CAS  Google Scholar 

  • Elizalde-Gonzalez, M. P., Mattusch, J., Einicke, W. D., & Wennrich, R. (2001a). Sorption on natural solids for arsenic removal. Chemical Engineering Journal, 81, 187–195.

    Article  CAS  Google Scholar 

  • Elizalde-Gonzalez, M. P., Mattusch, J., Wennrich, R., & Morgenstern, P. (2001b). Uptake of arsenite and arsenate by clinoptilolite-rich tuffs. Microporous and Mesoporous Materials, 46, 277–286.

    Article  CAS  Google Scholar 

  • Elizalde-Gonzalez, M. P., Mattusch, J., & Wennrich, R. (2001c). Application of natural zeolites for preconcentration of arsenic species in water samples. Journal of Environmental Monitoring, 3, 22–26.

    Article  CAS  Google Scholar 

  • Gao, X., Root, R. A., Farrell, J., Ela, W., & Chorover, J. (2013). Effect of silicic acid on arsenate and arsenite retention mechanisms on 6-L ferrihydrite: a spectroscopic and batch adsorption approach. Applied Geochemistry, 38, 110–120.

    Article  CAS  Google Scholar 

  • Guo, L., Ye, P., Wang, J., Fu, F., & Wu, Z. (2015). Three-dimensional Fe3O4-graphene macroscopic composites for arsenic and arsenate removal. Journal of Hazardous Materials, 298, 28–35.

    Article  CAS  Google Scholar 

  • Jeon, C. S., Baek, K., Park, J. K., Oh, Y. K., & Lee, S. D. (2009). Adsorption characteristics of As(V) on iron-coated zeolite. Journal of Hazardous Materials, 163, 804–808.

    Article  CAS  Google Scholar 

  • Jia, Y., & Demopoulos, G. P. (2008). Coprecipitation of arsenate with iron(III) in aqueous sulfate media: effect of time, lime as base and co-ions on arsenic retention. Water Research, 42, 661–668.

    Article  CAS  Google Scholar 

  • Jia, Y., Xu, L., Wang, X., & Demopoulos, G. P. (2007). Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite. Geochimica et Cosmochimica Acta, 71, 1643–1654.

    Article  CAS  Google Scholar 

  • Li, Z., Beachner, R., McManama, Z., & Hanlie, H. (2007). Sorption of arsenic by surfactant-modified zeolite and kaolinite. Microporous and Mesoporous Materials, 105, 291–297.

    Article  CAS  Google Scholar 

  • Li, Z., Jean, J. S., Jiang, W. T., Chang, P. H., Chen, C. J., & Liao, L. (2011). Removal of arsenic from water using Fe-exchanged natural zeolite. Journal of Hazardous Materials, 187, 318–323.

    Article  CAS  Google Scholar 

  • Lin, S., Wei, W., Wu, X., Zhou, T., Mao, J., & Yun, Y. S. (2015). Selective recovery of Pd(II) from extremely acidic solution using ion-imprinted chitosan fiber: Adsorption performance and mechanisms. Journal of Hazardous Materials, 299, 10–17.

    Article  CAS  Google Scholar 

  • Lv, G., Li, Z., Jiang, W.-T., Ackley, C., Fenske, N., & Demarco, N. (2014). Removal of Cr(VI) from water using Fe(II)-modified natural zeolite. Chemical Engineering Research and Design, 92, 384–390.

    Article  CAS  Google Scholar 

  • Melo, C. R., Riella, H. G., Kuhnen, N. C., Angioletto, E., Melo, A. R., Bernardin, A. M., da Rocha, M. R., & da Silva, L. (2012). Synthesis of 4A zeolites from kaolin for obtaining 5A zeolites through ionic exchange for adsorption of arsenic. Materials Science and Engineering B, 177, 345–349.

    Article  CAS  Google Scholar 

  • Mertens, J., Rose, J., Kagi, R., Chaurand, P., Plotze, M., Wehrli, B., & Furrer, G. (2012). Adsorption of arsenic on polyaluminum granulate. Environmental Science and Technology, 46, 7310–7.

    Article  CAS  Google Scholar 

  • Mohan, D., & Pittman, C. U., Jr. (2007). Arsenic removal from water/wastewater using adsorbents—a critical review. Journal of Hazardous Materials, 142, 1–53.

    Article  CAS  Google Scholar 

  • Muller, K., Ciminelli, V. S., Dantas, M. S., & Willscher, S. (2010). A comparative study of As(III) and As(V) in aqueous solutions and adsorbed on iron oxy-hydroxides by Raman spectroscopy. Water Research, 44, 5660–72.

    Article  Google Scholar 

  • Neupane, G., Donahoe, R. J., & Arai, Y. (2014). Kinetics of competitive adsorption/desorption of arsenate and phosphate at the ferrihydrite–water interface. Chemical Geology, 368, 31–38.

    Article  CAS  Google Scholar 

  • O’Reilly, S. E., Strawn, D. G., & Sparks, D. L. (2001). Residence time effects on arsenate adsorption/desorption mechanisms on goethite. Soil Science Society of America Journal, 65, 67–77.

    Article  Google Scholar 

  • Payne, K., & Abdel-Fattah, T. (2005). Adsorption of arsenate and arsenite by iron-treated activated carbon and zeolites: effects of pH, temperature, and ionic strength. Journal of Environmental Science and Health, Part A, 40, 723–749.

    Article  CAS  Google Scholar 

  • Qiu, W., & Zheng, Y. (2007). Arsenate removal from water by an alumina-modified zeolite recovered from fly ash. Journal of Hazardous Materials, 148, 721–726.

    Article  CAS  Google Scholar 

  • Rodriguez-Lado, L., Sun, G., Berg, M., Zhang, Q., Xue, H., Zheng, Q., & Johnson, C. A. (2013). Groundwater arsenic contamination throughout China. Science, 341, 866–868.

    Article  CAS  Google Scholar 

  • Ruggieri, F., Marin, V., Gimeno, D., Fernandez-Turiel, J. L., Garcia-Valles, M., & Gutierrez, L. (2008). Application of zeolitic volcanic rocks for arsenic removal from water. Engineering Geology, 101, 245–250.

    Article  Google Scholar 

  • Shevade, S., & Ford, R. G. (2004). Use of synthetic zeolites for arsenate removal from pollutant water. Water Research, 38, 3197–3204.

    Article  CAS  Google Scholar 

  • Simsek, E. B., Ozdemir, E., & Beker, U. (2013a). Process Optimization for Arsenic Adsorption onto Natural Zeolite Incorporating Metal Oxides by Response Surface Methodology. Water, Air, and Soil Pollution, 224.

  • Simsek, E. B., Özdemir, E., & Beker, U. (2013b). Zeolite supported mono- and bimetallic oxides: promising adsorbents for removal of As(V) in aqueous solutions. Chemical Engineering Journal, 220, 402–411.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • Stanić, T., Daković, A., Živanović, A., Tomašević-Čanović, M., Dondur, V., & Milićević, S. (2008). Adsorption of arsenic (V) by iron (III)-modified natural zeolitic tuff. Environmental Chemistry Letters, 7, 161–166.

    Article  Google Scholar 

  • Swedlund, P. J., Holtkamp, H., Song, Y., & Daughney, C. J. (2014). Arsenate-ferrihydrite systems from minutes to months: a macroscopic and ir spectroscopic study of an elusive equilibrium. Environmental Science and Technology, 48, 2759–2765.

    Article  CAS  Google Scholar 

  • Tuna, A. Ö. A., Özdemir, E., Şimşek, E. B., & Beker, U. (2013). Removal of As(V) from aqueous solution by activated carbon-based hybrid adsorbents: Impact of experimental conditions. Chemical Engineering Journal, 223, 116–128.

    Article  CAS  Google Scholar 

  • Vadahanambi, S., Lee, S. H., Kim, W. J., & Oh, I. K. (2013). Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-iron oxide nanostructures. Environmental Science and Technology, 47, 10510–10517.

    CAS  Google Scholar 

  • Waychunas, G. A., Fuller, C. C., Rea, B. A., & Davis, J. A. (1996). Wide angle X-ray scattering (WAXS) study of “'two-line”' ferrihydrite structure: effect of arsenate sorption and counterion variation and comparison with EXAFS results. Geochimica et Cosmochimica Acta, 60, 1765–1781.

    Article  CAS  Google Scholar 

  • Zhang, G., Qu, J., Liu, H., Liu, R., & Wu, R. (2007). Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal. Water Research, 41, 1921–1928.

    Article  CAS  Google Scholar 

  • Zhao, Z., Jia, Y., Xu, L., & Zhao, S. (2011). Adsorption and heterogeneous oxidation of As(III) on ferrihydrite. Water Research, 45, 6496–504.

    Article  CAS  Google Scholar 

  • Zhu, H., Jia, Y., Wu, X., & Wang, H. (2009). Removal of arsenic from water by supported nano zero-valent iron on activated carbon. Journal of Hazardous Materials, 172, 1591–6.

    Article  CAS  Google Scholar 

  • Zhu, J., Lou, Z., Liu, Y., Fu, R., Baig, S. A., & Xu, X. (2015). Adsorption behavior and removal mechanism of arsenic on graphene modified by iron–manganese binary oxide (FeMnOx/RGO) from aqueous solutions. RSC Advances, 5, 67951–67961.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Fundation of China (Nos. 41530643, 41273133) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB14020203).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yulong Wang or Shaofeng Wang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 452 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, S., Wang, X. et al. Adsorption Behavior and Removal Mechanism of Arsenic from Water by Fe(III)-Modified 13X Molecular Sieves. Water Air Soil Pollut 227, 257 (2016). https://doi.org/10.1007/s11270-016-2955-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2955-3

Keywords

Navigation