Skip to main content

Advertisement

Log in

Leaching of a Mixture of Hexazinone, Sulfometuron-Methyl, and Diuron Applied to Soils of Contrasting Textures

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The increasing use of herbicides in sugarcane production has increased environmental concern regarding the fate of these compounds, especially when they are used in mixtures. Among the various processes that determine the behavior of molecules in the environment, leaching stands out. In this context, the aim of this study was to evaluate the leaching of a mixture of hexazinone, sulfometuron-methyl, and diuron in soils with contrasting textures. A completely randomized experimental design containing three replications in a 2 × 6 factorial arrangement was used, with two soils (alfisol–Paleudult, sandy clay texture and ultisol–typic Hapludalf, sandy loam texture) and six depths (0–0.05, 0.05–0.10, 0.10–0.15, 0.15–0.20, 0.20–0.25, and 0.25–0.30 m). Three glass columns of 50 cm were used for each soil. The dose used was 391.0 + 33.35 + 1386.9 g a.i. ha−1 of hexazinone, sulfometuron-methyl and diuron, respectively. After applying the mixture to the top of each column, rainfall simulation with 200 mm of 0.01 mol L−1 CaCl2 solution was applied for 48 h. The leachates were collected at 6, 12, 24, 36, and 48 h. The chromatographic determinations of the herbicides were performed by high-performance liquid chromatography (HPLC) with a UV-Vis detector. For hexazinone, the highest percentage recovery in the soil with a sandy clay texture occurred at a depth of 0.10–0.15 m, with 40 % recovered, while in the soil with a sandy loam texture, the most part was recovered at a depth of 0.25–0.30 m. Diuron demonstrated little mobility in the soil and was detected in most cases only in the surface layer (up to 0.10 m) in both soils. Sulfometuron-methyl, in soil with a sandy clay texture, was detected to a depth of 0.15–0.20 m with the highest concentration found at a depth of 0–0.05 m, while in sandy loam soil, a higher concentration was found at a depth of 0.10–0.15 m; this herbicide was detected down to 0.25–0.30 m. These results show that the soil texture directly influences the leaching of hexazinone, sulfometuron-methyl, and diuron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • ANVISA - Agência Nacional de Vigilância Sanitária (2003). Resolução – RE n° 899.

  • Arias-Estévez, M., López-Periago, E., Martínez-Carballo, E., Simal-Gándara, J., Mejuto, J. C., & García-Río, L. (2008). The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems & Environment, 123(4), 247–260.

    Article  Google Scholar 

  • Christoffoleti, P. J., López-Ovejero, R. F., Damin, V., Carvalho, S. J. P., & Nicolai, M. (2008). Comportamento dos herbicidas aplicados ao solo na cultura da cana-de-açúcar (p. 85). Piracicaba: ESALQ.

    Google Scholar 

  • Dusek, J., Dohnal, M., Snehota, M., Sobotkova, M., Ray, C., & Vogel, T. (2015). Transport of bromide and pesticides through an undisturbed soil column: a modeling study with global optimization analysis. Journal of Contaminant Hydrology, 175(176), 1–16.

    Article  Google Scholar 

  • Dousset, S., Chauvin, C., Durlet, P., & Thévenot, M. (2004). Transfer of hexazinone and glyphosate through undisturbed soil columns in soils under Christmas tree cultivation. Chemosphere, 57(4), 265–272.

    Article  CAS  Google Scholar 

  • Dores, E. F. G. C., Souza, L., Villa, R. V., & Pinto, A. A. (2013). Assessment of metolachlor and diuron leaching in a tropical soil using undisturbed soil columns under laboratory conditions. Journal of Environmental Science and Health, Part B, 48(2), 114–121.

    Article  CAS  Google Scholar 

  • EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. (2013). Sistema Brasileiro de Classificação de Solos (3rd ed., p. 353). Brasília: Embrapa Solos.

    Google Scholar 

  • Florido, F., Dias, A. C. R., Monquero, P. A., & Tornisielo, V. L. (2015). Mobilidade do herbicida imazaquin em diferentes solos. Revista Caatinga, 28(3), 54–60.

    Article  Google Scholar 

  • Garcia, D. B., Alves, S. N. R., Cason, J. B., & Christoffoleti, P. J. (2012). Lixiviação de diuron, hexazinone, e sulfometuron-methyl em formulação comercial e isoladamente em dois solos contrastantes. Revista Brasileira de Herbicidas, 11(2), 222–230.

    Article  Google Scholar 

  • Gerstl, Z., & Albasel, N. (1984). Field distribution of pesticides applied via a drip irrigation system. Irrigation Science, 5, 181–193.

    Article  Google Scholar 

  • INMETRO - Instituto Nacional de Metrologia, Normalização e Qualidade Industrial. (2003). Orientações sobre validação de métodos de ensaios químicos. DOQ-CGCRE-008.

    Google Scholar 

  • Inoue, M. H., Oliveira, R. S., Jr., Constantin, J., Alonso, D. G., & Santana, D. C. (2008). Lixiviação e degradação de diuron em dois solos de textura contrastantes. Acta Scientiarum Agronomy, 30(5), 631–638.

    CAS  Google Scholar 

  • Inoue, M. H., Possamai, A. C. P., Mendes, K. F., Ben, R., Matos, A. K. A., & Santos, E. G. (2014). Potencial de lixiviação de herbicidas utilizados na cana-de-açúcar em solos contrastantes. Bioscience Journal, 30(5), 659–665.

    Google Scholar 

  • Koskinen, W. C., & Harper, S. S. (1990). The retention process: mechanisms. In H. H. Cheng (Ed.), Pesticides in the soil environment: process, impacts and modeling (pp. 51–77). Madinson: Soil Science Society of America.

    Google Scholar 

  • Koskinen, W. C., Stone, D. M., & Harris, A. R. (1996). Sorption of hexazinone, sulfometuron-methyl and tebuthiuron on acid, low base saturated sands. Chemosphere, 32(9), 1681–1689.

    Article  CAS  Google Scholar 

  • Kruse, N. D., Trezzi, M. M., & Vidal, R. A. (2000). Herbicidas inibidores de EPSPS: Revisão de literatura. Revista Brasileira de Herbicidas, 1(2), 139–146.

    Article  Google Scholar 

  • Landry, D., Dousset, S., & Andreux, F. (2004). Laboratory leaching studies of oryzalin and diuron through three undisturbed vineyard soils columns. Chemosphere, 54(6), 735–742.

    Article  CAS  Google Scholar 

  • Liu, Y., Xu, Z., Wu, X., Gui, W., & Zhu, G. (2010). Adsorption and desorption behavior of herbicide diuron on various Chinese cultivated soils. Journal of Hazardous Materials, 178(1-3), 462–468.

    Article  CAS  Google Scholar 

  • Mendes, K. F., Goulart, B. F., Possamai, A. C. S., Inoue, M. H., Matos, A. K. A., & Tschope, M. C. (2013). Lixiviação do hexazinone e da mistura hexazinone + diuron em colunas de solos com texturas contrastantes. Revista Agroambiente On-line, 7(2), 218–224.

    Article  Google Scholar 

  • Monquero, P. A., Braga, E. M., & Malardo, M. R. (2014). Manejo de Merremia aegyptia com misturas de herbicidas utilizando diferentes lâminas de água e na presença ou ausência de palha de cana-de-açúcar. Revista Brasileira de Herbicidas, 13(2), 88–96.

    Article  Google Scholar 

  • Marchesan, E. D., Trezzi, M. M., Vidal, R. A., Dick, D. P., & Xavier, E. (2015). Leaching of atrazine in commercial and xerogel formulations in oxisol using bioassay and chromatographic methods. Planta Daninha, 33(2), 323–329.

    Article  Google Scholar 

  • OECD - Organisation for Economic Co-Operation and Development. (2004). OECD guidelines for testing of chemicals (p. 15). Paris: Test number 312: Leaching in Soil Columns.

    Google Scholar 

  • Oliveira, R. S., Jr., Koskinen, W. C., & Ferreira, F. A. (2000). Sorption and leaching potential of herbicides on Brazilian soils. Weed Research, 41(2), 97–110.

    Article  Google Scholar 

  • Oliveira, R. S., Jr. (2011). Mecanismos de ação de herbicidas. In R. S. Oliveira Jr., J. Constantin, & M. H. Inoue (Eds.), Biologia de Manejo de Plantas Daninhas (2nd ed., pp. 149–150). Curitiba: Ominpax.

    Google Scholar 

  • Passos, A. B. R. J., Freitas, M. A. M., Gonçalves, V. A., Silva, G. S., Silva, A. A., Queiroz, M. E. L. R., Lima, C. F., & Silva, D. V. (2015). Leaching of sulfentrazone in soils of reforestation in Brazil. Environmental Earth Sciences, 74(2), 1211–1215.

    Article  CAS  Google Scholar 

  • Rocha, P. R. R., Faria, A. T., Borges, L. G. F. C., Silva, L. O. C., Silva, A. A., & Ferreira, E. A. (2013). Sorção e dessorção do diuron em quatro latossolos brasileiros. Planta Daninha, 31(1), 231–238.

    Article  Google Scholar 

  • Santos, E. A., Correia, N. M., Silva, J. R. M., Velini, E. D., Passos, A. B. R. J., & Durigan, J. C. (2015). Herbicide detection in groundwater in Córrego Rico-SP watershed. Planta Daninha, 33(1), 147–155.

    Article  Google Scholar 

  • Senseman, S. A. (2007) Herbicide Handbook (pp. 275-278). 9th Ed Lawrence, KS: Weed Science Society of America.

  • Shikida, P. F. A., & Perosa, B. B. (2012). Álcool combustível do Brasil e path dependence. Revista de Economia e Sociologia Rural, 50(2), 243–262.

    Article  Google Scholar 

  • PPDB - Pesticide Properties Database. (2016). Agriculture & Environment Research Unit (AERU). University of Hertfordshire. http://sitem.herts.ac.uk/aeru/ppdb/en/index.htm. Accessed 6 Mar 2016.

  • Zhu, Y., & Li, Q. X. (2002). Movement of bromacil and hexazinone in soils of Hawaiian pineapple fields. Chemosphere, 49(6), 669–674.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Mato Grosso Research Foundation (FAPEMAT) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kassio Ferreira Mendes.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendes, K.F., Inoue, M.H., Goulart, M.O. et al. Leaching of a Mixture of Hexazinone, Sulfometuron-Methyl, and Diuron Applied to Soils of Contrasting Textures. Water Air Soil Pollut 227, 268 (2016). https://doi.org/10.1007/s11270-016-2954-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2954-4

Keywords

Navigation