A Review and Evaluation of the Impacts of Climate Change on Geogenic Arsenic in Groundwater from Fractured Bedrock Aquifers

Abstract

Climate change is expected to affect the groundwater quality by altering recharge, water table elevation, groundwater flow, and land use. In fractured bedrock aquifers, the quality of groundwater is a sensitive issue, particularly in areas affected by geogenic arsenic contamination. Understanding how climate change will affect the geochemistry of naturally occurring arsenic in groundwater is crucial to ensure sustainable use of this resource, particularly as a source of drinking water. This paper presents a review of the potential impacts of climate change on arsenic concentration in bedrock aquifers and identifies issues that remain unresolved. During intense and prolonged low flow, the decline in the water table is expected to increase the oxidation of arsenic-bearing sulfides in the unsaturated zone. In addition, reduced groundwater flow may increase the occurrence of geochemically evolved arsenic-rich groundwater and enhance arsenic mobilization by reductive dissolution and alkali desorption. In contrast, the occurrence of extreme recharge events is expected to further decrease arsenic concentrations because of the greater dilution by oxygenated, low-pH water. In some cases, arsenic mobilization could be indirectly induced by climate change through changes in land use, particularly those causing increased groundwater withdrawals and pollution. The overall impact of climate change on dissolved arsenic will vary greatly according to the bedrock aquifer properties that influence the sensitivity of the groundwater system to climate change. To date, the scarcity of data related to the temporal variability of arsenic in fractured bedrock groundwater is a major obstacle in evaluating the future evolution of the resource quality.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Acharyya, S. K., Shah, B. A., Ashyiya, I. D., & Pandey, Y. (2005). Arsenic contamination in groundwater from parts of Ambagarh-Chowki block, Chhattisgarh, India: source and release mechanism. Environmental Geology, 49, 148–158.

    CAS  Article  Google Scholar 

  2. Ahn, J. S. (2012). Geochemical occurrences of arsenic and fluoride in bedrock groundwater: a case study in Geumsan County, Korea. Environmental Geochemistry and Health, 34, 43–54.

    CAS  Article  Google Scholar 

  3. Ahn, J. S., & Cho, Y.-C. (2013). Predicting natural arsenic contamination of bedrock groundwater for a local region in Korea and its application. Environmental earth sciences, 68, 2123–2132.

    CAS  Article  Google Scholar 

  4. Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater and pollution. A.A. Balkema Publishers.

  5. Asta, M. P., Cama, J., Ayora, C., Acero, P., & de Giudici, G. (2010). Arsenopyrite dissolution rates in O2-bearing solutions. Chemical Geology, 273, 272–285.

    CAS  Article  Google Scholar 

  6. Ayotte, J. D., Belaval, M., Olson, S. A., Burow, K. R., Flanagan, S. M., Hinkle, S. R., & Lindsey, B. D. (2015). Factors affecting temporal variability of arsenic in groundwater used for drinking water supply in the United States. Science of the Total Environment, 505, 1370–1379.

    CAS  Article  Google Scholar 

  7. Ayotte, J. D., Montgomery, D. L., Flanagan, S. M., & Robinson, K. W. (2003). Arsenic in groundwater in eastern New England: occurrence, controls, and human health implications. Environmental science & technology, 37, 2075–2083.

    CAS  Article  Google Scholar 

  8. Bhattacharya, P., Jacks, G., & von Brömssen, M. (2010). Arsenic in Swedish groundwater—mobility and risk for naturally elevated concentrations: final report, Universitetsservice AB.

    Google Scholar 

  9. Bhattacharya, P., Sracek, O., Eldvall, B., Asklund, R., Barmen, G., Jacks, G., Koku, J., Gustafsson, J.-E., Singh, N., & Balfors, B. B. (2012). Hydrogeochemical study on the contamination of water resources in a part of Tarkwa mining area, Western Ghana. Journal of African Earth Sciences, 66–67, 72–84.

    Article  Google Scholar 

  10. Bloomfield, J. P., Williams, R. J., Gooddy, D. C., Cape, J. N., & Guha, P. (2006). Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater—a UK perspective. Science of the Total Environment, 369, 163–177.

    CAS  Article  Google Scholar 

  11. Borba, R. P., Figueiredo, B. R., & Matschullat, J. (2003). Geochemical distribution of arsenic in waters, sediments and weathered gold mineralized rocks from Iron Quadrangle, Brazil. Environmental Geology, 44, 39–52.

    CAS  Google Scholar 

  12. Bottomley, D. (1984). Origins of some arseniferous groundwaters in Nova Scotia and New Brunswick, Canada. Journal of Hydrology, 69, 223–257.

    CAS  Article  Google Scholar 

  13. Boyle, D. R., Turner, R. J. W., & Hall, G. E. M. (1998). Anomalous arsenic concentrations in groundwaters of an island community, Bowen Island, British Columbia. Environmental Geochemistry and Health, 20, 199–212.

    CAS  Article  Google Scholar 

  14. Bretzler, A., & Johnson, C. A. (2015). The geogenic contamination handbook: addressing arsenic and fluoride in drinking water. Applied Geochemistry, 63, 642–646.

    CAS  Article  Google Scholar 

  15. Carneiro, J. F., Boughriba, M., Correia, A., Zarhloule, Y., Rimi, A., & El Houadi, B. (2010). Evaluation of climate change effects in a coastal aquifer in Morocco using a density-dependent numerical model. Environmental Earth Sciences, 61, 241–252.

    CAS  Article  Google Scholar 

  16. Chopard, A., Benzaazoua, M., Plante, B., Bouzahzah, H., & Marion, P. (2015). Kinetic tests to evaluate the relative oxidation rates of various sulfides and sulfosalts. Santiago: ICARD2015 Proceedings.

    Google Scholar 

  17. Dams, J., Salvadore, E., Van Daele, T., Ntegeka, V., Willems, P., & Batelaan, O. (2012). Spatio-temporal impact of climate change on the groundwater system. Hydrology and Earth System Sciences, 16, 1517–1531.

    Article  Google Scholar 

  18. Drahota, P., & Filippi, M. (2009). Secondary arsenic minerals in the environment: a review. Environment International, 35, 1243–1255.

    CAS  Article  Google Scholar 

  19. Figura, S., Livingstone, D. M., Hoehn, E., & Kipfer, R. (2011). Regime shift in groundwater temperature triggered by the Arctic Oscillation. Geophysical Research Letters, 38, L23401.

    Article  Google Scholar 

  20. Foley, N. K., & Ayuso, R. A. (2008). Mineral sources and transport pathways for arsenic release in a coastal watershed, USA. Geochemistry-exploration Environment Analysis, 8, 59–75.

    CAS  Article  Google Scholar 

  21. Frengstad, B., Skrede, A. K. M., Banks, D., Krog, J. R., & Siewers, U. (2000). The chemistry of Norwegian groundwaters: III. The distribution of trace elements in 476 crystalline bedrock groundwaters, as analysed by ICP-MS techniques. Science of The Total Environment, 246(1), 21–40.

    CAS  Article  Google Scholar 

  22. Frost, F., Franke, D., Pierson, K., Woodruff, L., Raasina, B., Davis, R., & Davies, J. (1993). A seasonal study of arsenic in groundwater, Snohomish County, Washington, USA. Environmental geochemistry and health, 15, 209–214.

    CAS  Article  Google Scholar 

  23. Grantham, D. A., & Jones, J. F. (1977). Arsenic contamination of water wells in Nova Scotia. American Water Works Association Journal, 69(12), 653–657.

    CAS  Google Scholar 

  24. Green, T. R., Taniguchi, M., Kooi, H., Gurdak, J. J., Allen, D. M., Hiscock, K. M., Treidel, H., & Aureli, A. (2011). Beneath the surface of global change: impacts of climate change on groundwater. Journal of Hydrology, 405, 532–560.

    Article  Google Scholar 

  25. Gurdak, J. J., McMahon, P. B., & Bruce, B. W. (2012). Vulnerability of groundwater quality to human activity and climate change and variability, High Plains aquifer, USA. In H. Treidel, J. L. Martin-Bordes, & J. J. Gurdak (Eds.), Climate change effects on groundwater resources—a global synthesis of findings and recommendations, Taylor & Francis Group (pp. 145–168).

    Google Scholar 

  26. Harte, P. T., Ayotte, J. D., Hoffman, A., Revesz, K. M., Belaval, M., Lamb, S., & Boehlke, J. K. (2012). Heterogeneous redox conditions, arsenic mobility, and groundwater flow in a fractured-rock aquifer near a waste repository site in New Hampshire, USA. Hydrogeology Journal, 20, 1189–1201.

    CAS  Article  Google Scholar 

  27. IPCC. (2013). Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)], Cambridge, United Kingdom and New York, NY, USA

  28. Jackson, C. R., Meister, R., & Prudhomme, C. (2011). Modelling the effects of climate change and its uncertainty on UK Chalk groundwater resources from an ensemble of global climate model projections. Journal of Hydrology, 399, 12–28.

    Article  Google Scholar 

  29. Jyrkama, M. I., & Sykes, J. F. (2007). The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario). Journal of Hydrology, 338(3), 237–250.

    Article  Google Scholar 

  30. Kim, K., Kim, S.-H., Jeong, G. Y., & Kim, R.-H. (2012). Relations of As concentrations among groundwater, soil, and bedrock in Chungnam, Korea: implications for As mobilization in groundwater according to the As-hosting mineral change. Journal of Hazardous Materials, 199, 25–35.

    Article  Google Scholar 

  31. Klassen, R. A., Douma, S. L., Ford, A., Rencz, A., & Grunsky, E. (2009). Geoscience modelling of relative variation in natural arsenic hazard potential in New Brunswick: Geological Survey of Canada, Current Research 2009–7, p. 9 p.

    Google Scholar 

  32. Kløve, B., Ala-Aho, P., Bertrand, G., Gurdak, J. J., Kupfersberger, H., Kvaerner, J., Muotka, T., Mykrä, H., Preda, E., Rossi, P., et al. (2014). Climate change impacts on groundwater and dependent ecosystems. Journal of Hydrology, 518, 250–266.

    Article  Google Scholar 

  33. Kundzewicz, Z. W., & Döll, P. (2009). Will groundwater ease freshwater stress under climate change? Hydrological Sciences Journal, 54, 665–675.

    Article  Google Scholar 

  34. Kurylyk, B., Bourque, C.-A., & MacQuarrie, K. (2013). Potential surface temperature and shallow groundwater temperature response to climate change: an example from a small forested catchment in east-central New Brunswick (Canada). Hydrology and Earth System Sciences, 17, 2701–2716.

    Article  Google Scholar 

  35. Lerner, D. N., & Harris, B. (2009). The relationship between land use and groundwater resources and quality. Land Use Policy, 26(Supplement 1), S265–S273.

    Article  Google Scholar 

  36. Lipfert, G., Reeve, A. S., Sidle, W. C., & Marvinney, R. (2006). Geochemical patterns of arsenic-enriched ground water in fractured, crystalline bedrock, Northport, Maine, USA. Applied Geochemistry, 21, 528–545.

    CAS  Article  Google Scholar 

  37. Lipfert, G., Sidle, W. C., Reeve, A. S., Ayuso, R. A., & Boyce, A. J. (2007). High arsenic concentrations and enriched sulfur and oxygen isotopes in a fractured-bedrock ground-water system. Chemical Geology, 242, 385–399.

    CAS  Article  Google Scholar 

  38. Loukola-Ruskeeniemi, K., Tanskanen, H., & Lahermo, P. (1999). Anomalously high arsenic concentrations in spring waters in Kittilä, Finnish Lapland. Geological Survey of Finland, Special Paper 27, 97–102.

    Google Scholar 

  39. Mango, H., & Ryan, P. (2015). Source of arsenic-bearing pyrite in southwestern Vermont, USA: sulfur isotope evidence. Science of The Total Environment, 505, 1331–1339.

    CAS  Article  Google Scholar 

  40. Manning, A. H., Verplanck, P. L., Caine, J. S., & Todd, A. S. (2013). Links between climate change, water-table depth, and water chemistry in a mineralized mountain watershed. Applied Geochemistry, 37, 64–78.

    CAS  Article  Google Scholar 

  41. Mast, M. A., Turk, J. T., Clow, D. W., & Campbell, D. H. (2011). Response of lake chemistry to changes in atmospheric deposition and climate in three high-elevation wilderness areas of Colorado. Biogeochemistry, 103, 27–43.

    CAS  Article  Google Scholar 

  42. Meranger, J., Subramanian, K., & McCurdy, R. (1984). Arsenic in Nova Scotian groundwater. Science of the total environment, 39, 49–55.

    CAS  Article  Google Scholar 

  43. Naujokas, M. F., Anderson, B., Ahsan, H., Aposhian, H. V., Graziano, J. H., Thompson, C., & Suk, W. A. (2013). The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environmental Health Perspectives, 121, 295–302.

    CAS  Article  Google Scholar 

  44. Niu, B., Loaiciga, H. A., Wang, Z., Zhan, F. B., & Hong, S. (2014). Twenty years of global groundwater research: a Science Citation Index Expanded-based bibliometric survey (1993–2012). Journal of Hydrology, 519, Part A, 966–975.

    Article  Google Scholar 

  45. Nordstrom, D. K. (2009). Acid rock drainage and climate change. Journal of Geochemical Exploration, 100, 97–104.

    CAS  Article  Google Scholar 

  46. Nordstrom, D. K., Blowes, D. W., & Ptacek, C. J. (2015). Hydrogeochemistry and microbiology of mine drainage: an update. Applied Geochemistry, 57, 3–16.

    CAS  Article  Google Scholar 

  47. O’Shea, B., Stransky, M., Leitheiser, S., Brock, P., Marvinney, R. G., & Zheng, Y. (2015). Heterogeneous arsenic enrichment in meta-sedimentary rocks in central Maine, United States. Science of The Total Environment, 505, 1308–1319.

    Article  Google Scholar 

  48. Okkonen, J., Jyrkama, M., & Kløve, B. (2010). A conceptual approach for assessing the impact of climate change on groundwater and related surface waters in cold regions (Finland). Hydrogeology Journal, 18(2), 429–439.

    Article  Google Scholar 

  49. Pandey, P. K., Sharma, R., Roy, M., Roy, S., & Pandey, M. (2006). Arsenic contamination in the Kanker district of central-east India: geology and health effects. Environmental Geochemistry and Health, 28, 409–420.

    CAS  Article  Google Scholar 

  50. Parviainen, A., Loukola-Ruskeeniemi, K., Tarvainen, T., Hatakka, T., Härmä, P., Backman, B., Ketola, T., Kuula, P., Lehtinen, H., Sorvari, J., Pyy, O., Ruskeeniemi, T., & Luoma, S. (2015). Arsenic in bedrock, soil and groundwater—the first arsenic guidelines for aggregate production established in Finland. Earth-Science Reviews, 150, 709–723.

    CAS  Article  Google Scholar 

  51. Pearce, T. D., Ford, J. D., Prno, J., Duerden, F., Pittman, J., Beaumier, M., Berrang-Ford, L., & Smit, B. (2011). Climate change and mining in Canada. Mitigation and Adaptation Strategies For Global Change, 16, 347–368.

    Article  Google Scholar 

  52. Peters, S. C. (2008). Arsenic in groundwaters in the Northern Appalachian Mountain belt: a review of patterns and processes. Journal of Contaminant Hydrology, 99, 8–21.

    CAS  Article  Google Scholar 

  53. Peters, S. C., & Blum, J. D. (2003). The source and transport of arsenic in a bedrock aquifer, New Hampshire, USA. Applied Geochemistry, 18, 1773–1787.

    CAS  Article  Google Scholar 

  54. Pili, E., Tisserand, D., & Bureau, S. (2013). Origin, mobility, and temporal evolution of arsenic from a low-contamination catchment in Alpine crystalline rocks. Journal of Hazardous Materials, 262, 887–895.

    CAS  Article  Google Scholar 

  55. Ravenscroft, P., Brammer, H., & Richards, K. (2009). Arsenic pollution: a global synthesis, Wiley-Blackwell.

    Google Scholar 

  56. Reyes, F. A. P., Crosta, G. B., Frattini, P., Basirico, S., & Della Pergola, R. (2015). Hydrogeochemical overview and natural arsenic occurrence in groundwater from alpine springs (upper Valtellina, Northern Italy). Journal of Hydrology, 529, 1530–1549.

    Article  Google Scholar 

  57. Ruskeeniemi, T., Backman, B., Loukola-Ruskeeniemi, K., Sorvari, J., Lehtinen, H., Schultz, E., Mäkelä-Kurtto, R., Rossi, E., Vaajasaari, K., & Bilaletdin, A. (2011). Arsenic in the Pirkanmaa region, Southern Finland: from identification through to risk assessment to risk management. Geological Survey of Finland, Special Paper 49, 21–227.

    Google Scholar 

  58. Ryan, P. C., Kim, J., Wall, A. J., Moen, J. C., Corenthal, L. G., Chow, D. R., Sullivan, C. M., & Bright, K. S. (2011). Ultramafic-derived arsenic in a fractured bedrock aquifer. Applied Geochemistry, 26, 444–457.

    CAS  Article  Google Scholar 

  59. Ryan, P. C., Kim, J. J., Mango, H., Hattori, K., & Thompson, A. (2013). Arsenic in a fractured slate aquifer system, New England, USA: influence of bedrock geochemistry, groundwater flow paths, redox and ion exchange. Applied Geochemistry, 39, 181–192.

    CAS  Article  Google Scholar 

  60. Ryan, P. C., West, D. P., Hattori, K., Studwell, S., Allen, D. N., & Kim, J. (2015). The influence of metamorphic grade on arsenic in metasedimentary bedrock aquifers: a case study from Western New England, USA. Science of the Total Environment, 505, 1320–1330.

    CAS  Article  Google Scholar 

  61. Sahoo, N. R., & Pandalai, H. S. (2000). Secondary geochemical dispersion in the Precambrian auriferous Hutti-Maski schist belt, Raichur district, Karnataka, India: part I: anomalies of As, Sb, Hg and Bi in soil and groundwater. Journal of Geochemical Exploration, 71, 269–289.

    CAS  Article  Google Scholar 

  62. Serpa, C., Batterson, M., & Guzzwell, K. (2009). The influence of bedrock and mineral occurrences on arsenic concentrations in groundwater wells in the Gander Bay Area, Newfoundland: current research. Newfoundland and Labrador Department of Natural Resources Geological Survey, Report 09–1, 315–337.

    Google Scholar 

  63. Serrat-Capdevila, A., Valdés, J. B., Pérez, J. G., Baird, K., Mata, L. J., & Maddock, T. (2007). Modeling climate change impacts-and uncertainty-on the hydrology of a riparian system: the San Pedro Basin (Arizona/Sonora). Journal of Hydrology, 347, 48–66.

    Article  Google Scholar 

  64. Sharma, V. K., & Sohn, M. (2009). Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environment International, 35, 743–759.

    CAS  Article  Google Scholar 

  65. Shukla, D. P., Dubey, C. S., Singh, N. P., Tajbakhsh, M., & Chaudhry, M. (2010). Sources and controls of arsenic contamination in groundwater of Rajnandgaon and Kanker District, Chattisgarh Central India. Journal of Hydrology, 395, 49–66.

    CAS  Article  Google Scholar 

  66. Sidle, W. C. (2002). 18OSO4 and 18OH2O as prospective indicators of elevated arsenic in the Goose River ground-watershed, Maine. Environmental Geology, 42, 350–359.

    CAS  Article  Google Scholar 

  67. Sidle, W. C., & Fischer, R. A. (2003). Detection of 3H and 85Kr in groundwater from arsenic-bearing crystalline bedrock of the Goose River basin, Maine. Environmental Geology, 44, 781–789.

    CAS  Article  Google Scholar 

  68. Sidle, W. C., Wotten, B., & Murphy, E. (2001). Provenance of geogenic arsenic in the Goose River basin, Maine, USA. Environmental Geology, 41, 62–73.

    CAS  Article  Google Scholar 

  69. Smedley, P. L. (1996). Arsenic in rural groundwater in Ghana. Journal of African Earth Sciences, 22, 459–470.

    CAS  Article  Google Scholar 

  70. Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    CAS  Article  Google Scholar 

  71. Smedley, P. L., Knudsen, J., & Maiga, D. (2007). Arsenic in groundwater from mineralised Proterozoic basement rocks of Burkina Faso. Applied Geochemistry, 22, 1074–1092.

    CAS  Article  Google Scholar 

  72. Sorg, T. J., Chen, A. S. C., & Wang, L. (2014). Arsenic species in drinking water wells in the USA with high arsenic concentrations. Water Research, 48, 156–169.

    CAS  Article  Google Scholar 

  73. Stuart, M. E., Gooddy, D. C., Bloomfield, J. P., & Williams, A. T. (2011). A review of the impact of climate change on future nitrate concentrations in groundwater of the UK. Science of the Total Environment, 409, 2859–2873.

    CAS  Article  Google Scholar 

  74. Taylor, C. A., & Stefan, H. G. (2009). Shallow groundwater temperature response to climate change and urbanization. Journal of Hydrology, 375, 601–612.

    CAS  Article  Google Scholar 

  75. Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J. S., Edmunds, M., et al. (2013). Ground water and climate change. Nature Climate Change, 3, 322–329.

    Article  Google Scholar 

  76. Tisserand, D., Pili, E., Hellmann, R., Boullier, A.-M., & Charlet, L. (2014). Geogenic arsenic in groundwaters in the western Alps. Journal of Hydrology, 518, Part C, 317–325.

    Article  Google Scholar 

  77. Todd, A. S., Manning, A. H., Verplanck, P. L., Crouch, C., McKnight, D. M., & Dunham, R. (2012). Climate-change-driven deterioration of water quality in a mineralized watershed. Environmental Science & Technology, 46, 9324–9332.

    CAS  Article  Google Scholar 

  78. van Roosmalen, L., Sonnenborg, T. O., & Jensen, K. H. (2009). Impact of climate and land use change on the hydrology of a large-scale agricultural catchment. Water Resources Research, 45, W00A15.

    Google Scholar 

  79. Verplanck, P. L., Mueller, S. H., Goldfarb, R. J., Nordstrom, D. K., & Youcha, E. K. (2008). Geochemical controls of elevated arsenic concentrations in groundwater, Ester Dome, Fairbanks district, Alaska. Chemical Geology, 255, 160–172.

    CAS  Article  Google Scholar 

  80. Waibel, M. S., Gannett, M. W., Chang, H., & Hulbe, C. L. (2013). Spatial variability of the response to climate change in regional groundwater systems-examples from simulations in the Deschutes Basin, Oregon. Journal of Hydrology, 486, 187–201.

    Article  Google Scholar 

  81. Weldon, J. M., & MacRae, J. D. (2006). Correlations between arsenic in Maine groundwater and microbial populations as determined by fluorescence in situ hybridization. Chemosphere, 63, 440–448.

    CAS  Article  Google Scholar 

  82. World Water Assessment Programme. (2009). The United Nations World Water Development Report 3: water in a changing world. Paris: UNESCO.

    Google Scholar 

  83. Yang, Q., Culbertson, C. W., Nielsen, M. G., Schalk, C. W., Johnson, C. D., Marvinney, R. G., Stute, M., & Zheng, Y. (2015). Flow and sorption controls of groundwater arsenic in individual boreholes from bedrock aquifers in central Maine, USA. Science of The Total Environment, 505, 1291–1307.

    CAS  Article  Google Scholar 

  84. Yang, Q., Jung, H. B., Culbertson, C. W., Marvinney, R. G., Loiselle, M. C., Locke, D. B., Cheek, H., Thibodeau, H., & Zheng, Y. (2009). Spatial pattern of groundwater arsenic occurrence and association with bedrock geology in greater Augusta, Maine. Environmental science & technology, 43, 2714–2719.

    CAS  Article  Google Scholar 

  85. Yang, Q., Jung, H. B., Marvinney, R. G., Culbertson, C. W., & Zheng, Y. (2012). Can arsenic occurrence rates in bedrock aquifers be predicted? Environmental Science & Technology, 46, 2080–2087.

    CAS  Article  Google Scholar 

  86. Zheng, Y., & Ayotte, J. D. (2015). At the crossroads: hazard assessment and reduction of health risks from arsenic in private well waters of the northeastern United States and Atlantic Canada. Science of The Total Environment, 505, 1237–1247.

    CAS  Article  Google Scholar 

  87. Zhou, Y., Zwahlen, F., Wang, Y., & Li, Y. (2010). Impact of climate change on irrigation requirements in terms of groundwater resources. Hydrogeology journal, 18, 1571–1582.

    Article  Google Scholar 

  88. Zkeri, E., Aloupi, M., & Gaganis, P. (2015). Natural occurrence of arsenic in groundwater from Lesvos Island, Greece. Water, Air, & Soil Pollution, 226(9), 1–16.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This project was funded by the Quebec Ministry of the Environment (Ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques) through the Groundwater Knowledge Acquisition Program (PACES) with significant contributions from regional partners involved in the PACES, including the Regional County Municipalities (Abitibi, Vallée-de-l’Or, Abitibi-Ouest, Ville de Rouyn-Noranda, Témiscamingue) and the Regional Conference of Elected Officials of Abitibi-Temiscamingue. The authors acknowledge the Foundation of the University of Quebec in Abitibi-Temiscamingue (FUQAT) and the Canadian Institute of Mining (Amos section) for scholarships and support to the project of Raphaël Bondu, respectively. Finally, the authors would like to acknowledge two anonymous reviewers for their constructive comments which contributed to improve this article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Raphaël Bondu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bondu, R., Cloutier, V., Rosa, E. et al. A Review and Evaluation of the Impacts of Climate Change on Geogenic Arsenic in Groundwater from Fractured Bedrock Aquifers. Water Air Soil Pollut 227, 296 (2016). https://doi.org/10.1007/s11270-016-2936-6

Download citation

Keywords

  • Arsenic mobilization
  • Climate change
  • Fractured bedrock aquifers
  • Groundwater quality
  • Sulfide oxidation
  • Temporal variability