Skip to main content

Advertisement

Log in

CO2 Capture on Mesocellular Silica Foam Supported Amino Acid-Functionalized Ionic Liquids

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Combination of active and thermally stable amino acid-functionalized ionic liquids (AAILs) with high surface area and porosity of mesocellular silica foams (MCF) to form a robust CO2 sorbent is investigated in this study. These sorbent composites (MCF-x) are synthesized by immobilizing three AAILs (Gly, Lys, and Arg) into MCF by a simple wet-impregnation method. The prepared AAILs and MCF-x sorbents are characterized by N2 adsorption/desorption, small-angle X-ray scattering (SAXS), elemental analysis (EA), and Fourier-transformed infrared (FTIR) spectroscopies. Their corresponding CO2 sorption–desorption performance at 348 K under ambient pressure using dry 15 % CO2 is also studied. The obtained results show that the AAILs have low CO2 sorption capacities and rates because of their high viscosities. The MCF-x sorbents, however, exhibit remarkable enhancement of sorption capacities and fast kinetics. Among these sorbents, MCF-Lys possesses the superior sorption capacity of 1.38 mmolCO2/gsorbent, the higher tolerance to water moisture and much better long-term durability which may be a promising sorbent for CO2 capture applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arellano, I. H., Madani, S. H., Huang, J. H., & Pendleton, P. (2016). Carbon dioxide adsorption by zinc-functionalized ionic liquid impregnated into bio-templated mesoporous silica beads. Chemical Engineering Journal, 283, 692–702.

    Article  CAS  Google Scholar 

  • Bara, J. E., Camper, D. E., Gin, D. L., & Noble, R. D. (2010). Room-temperature ionic liquids and composite materials: platform technologies for CO2 capture. Accounts of Chemical Research, 43, 152–159.

    Article  CAS  Google Scholar 

  • Bates, E. D., Mayton, R. D., Ntai, I., & Davis, J. H. (2002). CO2 capture by a task-specific ionic liquid. Journal of the American Chemical Society, 124, 926–927.

    Article  CAS  Google Scholar 

  • Bhatta, L. K. G., Subramanyam, S., Chengala, M. D., Olivera, S., & Venkatesh, K. (2015). Progress in hydrotalcite like compounds and metal-based oxides for CO2 capture: a review. Journal of Cleaner Production, 103, 171–196.

    Article  CAS  Google Scholar 

  • Blanchard, L. A., Hancu, D., Beckman, E. J., & Brennecke, J. F. (1999). Green processing using ionic liquids and CO2. Nature, 399, 28–29.

    Article  Google Scholar 

  • Cogswell, C. F., Jiang, H., Ramberger, J., Accetta, D., Willey, R. J., & Choi, S. (2015). Effect of pore structure on CO2 adsorption characteristics of aminopolymer impregnated MCM-36. Langmuir, 31, 4534–4541.

    Article  CAS  Google Scholar 

  • Fukumoto, K., Yoshizawa, M., & Ohno, H. (2005). Room temperature ionic liquids from 20 natural amino acids. Journal of the American Chemical Society, 127, 2398–2399.

    Article  CAS  Google Scholar 

  • Goodrich, B. F., de la Fuente, J. C., Gurkan, B. E., Lopez, Z. K., Price, E. A., Huang, Y., & Brennecke, J. F. (2011a). Effect of water and temperature on absorption of CO2 by amine-functionalized anion-tethered ionic liquids. Journal of Physical Chemistry B, 115, 9140–9150.

    Article  CAS  Google Scholar 

  • Goodrich, B. F., de la Fuente, J. C., Gurkan, B. E., Zadigian, D. J., Price, E. A., Huang, Y., & Brennecke, J. F. (2011b). Experimental measurements of amine-functionalized anion-tethered ionic liquids with carbon dioxide. Industrial and Engineering Chemistry Research, 50, 111–118.

    Article  CAS  Google Scholar 

  • Granados-Correa, F., Bonifacio-Martinez, J., Hernandez-Mendoza, H., & Bulbulian, S. (2015). CO2 Capture on metallic oxide powders prepared through chemical combustion and calcination methods. Water, Air, and Soil Pollution, 226, 281.

    Article  Google Scholar 

  • Gurkan, B. E., de la Fuente, J. C., Mindrup, E. M., Ficke, L. E., Goodrich, B. F., Price, E. A., Schneider, W. F., & Brennecke, J. F. (2010). Equimolar CO2 absorption by anion-functionalized ionic liquids. Journal of the American Chemical Society, 132, 2116–2117.

    Article  CAS  Google Scholar 

  • Gutowski, K. E., & Maginn, E. J. (2008). Amine-functionalized task-specific ionic liquids: a mechanistic explanation for the dramatic increase in viscosity upon complexation with CO2 from molecular simulation. Journal of the American Chemical Society, 130, 14690–14704.

    Article  CAS  Google Scholar 

  • Houshmand, A., Daud, W. M. A. W., Lee, M. G., & Shafeeyan, M. S. (2012). Carbon dioxide capture with amine-grafted activated carbon. Water, Air, and Soil Pollution, 223, 827–835.

    Article  CAS  Google Scholar 

  • Hyun, S. H., Song, J. K., Kwak, B. I., Kim, J. H., & Hong, S. A. (1999). Synthesis of ZSM-5 zeolite composite membranes for CO2 separation. Journal of Materials Science, 34, 3095–3103.

    Article  CAS  Google Scholar 

  • Jiang, B., Wang, X., Gray, M. L., Duan, Y., Luebke, D., & Li, B. (2013). Development of amino acid and amino acid-complex based solid sorbents for CO2 capture. Applied Energy, 109, 112–118.

    Article  CAS  Google Scholar 

  • Khan, N. A., Hasan, Z., & Jhung, S. H. (2014). Ionic liquids supported on metal-organic frameworks: remarkable adsorbents for adsorptive desulfurization. Chemical Engineering Journal, 20, 376–380.

    CAS  Google Scholar 

  • Kishor, R., & Ghoshal, A. K. (2015). APTES grafted ordered mesoporous silica KIT-6 for CO2 adsorption. Chemical Engineering Journal, 262, 882–890.

    Article  CAS  Google Scholar 

  • Ko, Y. G., Shin, S. S., & Choi, U. S. (2011). Primary, secondary, and tertiary amines for CO2 capture: designing for mesoporous CO2 adsorbents. Journal of Colloid and Interface Science, 361, 594–602.

    Article  CAS  Google Scholar 

  • Lin, L. Y., & Bai, H. L. (2013). Facile and surfactant-free route to mesoporous silica-based adsorbents from TFT-LCD industrial waste powder for CO2 capture. Microporous and Mesoporous Materials, 170, 266–273.

    Article  CAS  Google Scholar 

  • Linneen, N., Pfeffer, R., & Lin, Y. S. (2013). CO2 capture using particulate silica aerogel immobilized with tetraethylenepentamine. Microporous and Mesoporous Materials, 176, 123–131.

    Article  CAS  Google Scholar 

  • Liu, S. H., Lin, Y. C., Chien, Y. C., & Hyu, H. R. (2011). Adsorption of CO2 from flue gas streams by a highly efficient and stable aminosilica adsorbent. Journal of the Air and Waste Management Association, 61, 226–233.

    Article  CAS  Google Scholar 

  • Liu, S. H., Hsiao, W. C., & Sie, W. H. (2012). Tetraethylenepentamine-modified mesoporous adsorbents for CO2 capture: effects of preparation methods. Adsorption, 18, 431–437.

    Article  Google Scholar 

  • Ludwig, R., & Kragl, U. (2007). Do we understand the volatility of ionic liquids? Angewandte Chemie International Edition, 46, 6582–6584.

    Article  CAS  Google Scholar 

  • Ma, J. J., Liu, Q. M., Chen, D. D., Zhou, Y., & Wen, S. (2014). Carbon dioxide adsorption using amine-functionalized mesocellular siliceous foams. Journal of Materials Science, 49, 7585–7596.

    Article  CAS  Google Scholar 

  • Raskar, R., Rane, V., & Gaikwad, A. (2013). The applications of lithium zirconium silicate at high temperature for the carbon dioxide sorption and conversion to syn-gas. Water, Air, and Soil Pollution, 224, 1569.

    Article  Google Scholar 

  • Ren, J., Wu, L. B., & Li, B. G. (2012). Preparation and CO2 sorption/desorption of N-(3-aminopropyl) aminoethyl tributylphosphonium amino acid salt ionic liquids supported into porous silica particles. Industrial and Engineering Chemistry Research, 51, 7901–7909.

    Article  CAS  Google Scholar 

  • Rochelle, G. T. (2009). Amine scrubbing for CO2 capture. Science, 325, 1652–1654.

    Article  CAS  Google Scholar 

  • Sanz, R., Calleja, G., Arencibia, A., & Sanz-Perez, E. S. (2012). Amino functionalized mesostructured SBA-15 silica for CO2 capture: exploring the relation between the adsorption capacity and the distribution of amino groups by TEM. Microporous and Mesoporous Materials, 158, 309–317.

    Article  CAS  Google Scholar 

  • Sanz-Perez, E. S., Olivares-Marin, M., Arencibia, A., Sanz, R., Calleja, G., & Maroto-Valer, M. M. (2013). CO2 adsorption performance of amino-functionalized SBA-15 under post-combustion conditions. International Journal of Greenhouse Gas Control, 17, 366–375.

    Article  CAS  Google Scholar 

  • Schmidt-Winkel, P., Lukens, W. W., Zhao, D. Y., Yang, P. D., Chmelka, B. F., & Stucky, G. D. (1999). Mesocellular siliceous foams with uniformly sized cells and windows. Journal of the American Chemical Society, 121, 254–255.

    Article  CAS  Google Scholar 

  • Shi, Q., Sun, H. X., Yang, R. X., Zhu, Z. Q., Liang, W. D., Tan, D. Z., Yang, B. P., Li, A., & Deng, W. Q. (2015). Synthesis of conjugated microporous polymers for gas storage and selective adsorption. Journal of Materials Science, 50, 6388–6394.

    Article  CAS  Google Scholar 

  • Ullah, R., Atilhan, M., Aparicio, S., Canlier, A., & Yavuz, C. T. (2015). Insights of CO2 adsorption performance of amine impregnated mesoporous silica (SBA-15) at wide range pressure and temperature conditions. International Journal of Greenhouse Gas Control, 43, 22–32.

    Article  CAS  Google Scholar 

  • Wang, C. M., Luo, X. Y., Luo, H. M., Jiang, D. E., Li, H. R., & Dai, S. (2011). Tuning the basicity of ionic liquids for equimolar CO2 capture. Angewandte Chemie International Edition, 50, 4918–4922.

    Article  CAS  Google Scholar 

  • Wang, X. F., Akhmedov, N. G., Duan, Y. H., Luebke, D., Hopkinson, D., & Li, B. Y. (2013). Amino acid-functionalized ionic liquid solid sorbents for post-combustion carbon capture. ACS Applied Materials & Interfaces, 5, 8670–8677.

    Article  CAS  Google Scholar 

  • Wang, J. Y., Huang, L., Yang, R. Y., Zhang, Z., Wu, J. W., Gao, Y. S., Wang, Q., O’Hare, D., & Zhong, Z. Y. (2014). Recent advances in solid sorbents for CO2 capture and new development trends. Energy and Environmental Science, 7, 3478–3518.

    Article  CAS  Google Scholar 

  • Wang, J. T., Wang, M., Li, W. C., Qiao, W. M., Long, D. H., & Ling, L. C. (2015). Application of polyethylenimine-impregnated solid adsorbents for direct capture of low-concentration CO2. AIChE Journal, 64, 972–980.

    Article  Google Scholar 

  • Yao, M. L., Wang, L., Hu, X., Hu, G. S., Luo, M. F., & Fan, M. H. (2015). Synthesis of nitrogen-doped carbon with three-dimensional mesostructures for CO2 capture. Journal of Materials Science, 50, 1221–1227.

    Article  CAS  Google Scholar 

  • Zhang, Y. Q., Zhang, S. J., Lu, X. M., Zhou, Q., Fan, W., & Zhang, X. P. (2009). Dual amino-functionalised phosphonium ionic liquids for CO2 capture. Chemistry-A European Journal, 15, 3003–3011.

    Article  CAS  Google Scholar 

  • Zhao, W. Y., Zhang, Z., Li, Z. S., & Cai, N. S. (2013). Investigation of thermal stability and continuous CO2 capture from flue gases with supported amine sorbent. Industrial and Engineering Chemistry Research, 52, 2084–2093.

    Article  CAS  Google Scholar 

  • Zhu, X., Fu, Y., Hu, G., Shen, Y., Dai, W., & Hu, X. (2012). CO2 capture with activated carbons prepared by petroleum coke and KOH at low pressure. Water, Air, and Soil Pollution, 224, 1387–1392.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support of this work from the Ministry of Science and Technology of Taiwan (Grant No.: NSC 101-2628-E-151-003-MY3) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou-Heng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SH., Sie, WH. CO2 Capture on Mesocellular Silica Foam Supported Amino Acid-Functionalized Ionic Liquids. Water Air Soil Pollut 227, 263 (2016). https://doi.org/10.1007/s11270-016-2925-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2925-9

Keywords

Navigation