Skip to main content

Advertisement

Log in

Integrated Geophysical and Geochemical Assessment for the Comprehensive Study of the Groundwater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Groundwater studies often involve using any one of geophysical, geological, geochemical, or chemical data in the assessment of its characteristics. An integrated method in using all the above had been carried out for more comprehensive and confirmative assessments along the Thandava River basin, India. The geophysical data included the recording of the vertical electrical soundings by Schlumberger array configuration in 50 stations along the basin. Thirty soil samples and rainfall data of 5 years included the geological data. Chemical characterizations for 117 groundwater water samples were carried for two seasons. This study proposes the advantages besides delineating the approach in carrying integrated rather than mere single parameter-based speculative study. This correlative and computer modeling aided study led to an in-depth along with confirmative assessments on various geological, geophysical, and chemical characteristics of the groundwater along with the pollution status. Comprehensive details of groundwater like geomorphology, potential water zones, flow pattern, soil types, geochemical evolution of ions, chemical status, and suitability can be accessed by applying this type of integrated study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrew, R., & Pedro, M, S. (2005). The challenge of collaborative groundwater governance: four case studies from Spain and Australia. [http://www.newater.uni-osnabrueck.de/caiwa/data/papers%20session/F4/ARPMSCAIWA.pdf]

  • APHA, AWWA, & WPCF. (1995). Standard methods for the examination of water and waste water (19th ed., pp. I–47). Washington DC: APHA.

    Google Scholar 

  • Arias-Estévez, M., López-Periago, E., Martínez-Carballo, E., Simal-Gándara, J., Mejuto, J. C., & García-Río, L. (2008). The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems & Environment, 123(4), 247–260.

    Article  Google Scholar 

  • Atekwana, E. A., Atekwana, E. A., Rowe, R. S., Werkema, D. D., & Legall, F. D. (2004). The relationship of total dissolved solids measurements to bulk electrical conductivity in an aquifer contaminated with hydrocarbon. Journal of Applied Geophysics, 56(4), 281–294.

    Article  Google Scholar 

  • Bose, R. N., Chatterjee, D., & Sen, A. K. (1973). Electrical resistivity surveys for groundwater in the Aurangabad sub-division, Gaya district, Bihar, India. Geoexploration, 11(1), 171–181.

    Article  Google Scholar 

  • Chandra, S., Rao, V. A., Krishnamurthy, N. S., Dutta, S., & Ahmad, S. (2006). Integrated studies for characterization of lineaments used to locate ground water potential zones in hard rock region of Karnataka, India. Hydrogeology, 14, 1042–1051.

    Article  CAS  Google Scholar 

  • Chebotarev, I. I. (1955). Metamorphism of natural waters in the crust of weathering. Geochemica. Cosmochim. Acta, 8, 198–212.

    Article  CAS  Google Scholar 

  • Chen, J., Taniguchi, M., Liu, G., Miyaoka, K., Onodera, S. I., Tokunaga, T., & Fukushima, Y. (2007). Nitrate pollution of groundwater in the Yellow River delta, China. Hydrogeology Journal, 15(8), 1605–1614.

    Article  CAS  Google Scholar 

  • Das, B. K., & Dhiman, S. C. (2003). Water and sediment chemistry of higher Himalayan lakes in the Spiti Valley: control on weathering, provenance and tectonic setting of the basin. Environmental Geology, 44(6), 717–730.

    Article  CAS  Google Scholar 

  • Das, B. K., & Kaur, P. (2007). Geochemistry of surface and subsurface waters of Rewalsar Lake, Mandi district: Himachal Pradesh: constraints on weathering and erosion. Journal of Geological Society of India, 58, 1020–1030.

    Google Scholar 

  • Datta, P. S., & Tyagi, S. K. (1996). Major ion chemistry of groundwater in Delhi area: chemical weathering processes and groundwater flow regime. Journal of the Geological Society of India, 47, 179–188.

    CAS  Google Scholar 

  • Dowling, C. B., Poreda, R. J., & Basu, A. R. (2003). The groundwater geochemistry of the Bengal Basin: weathering, chemsorption, and trace metal flux to the oceans. Geochimica et Cosmochimica Acta, 67(12), 2117–2136.

    Article  CAS  Google Scholar 

  • Elias, D., & Ierotheos, Z. (2006). Groundwater vulnerability and risk mapping in a geologically complex area by using stable isotopes, remote sensing and GIS techniques. Envi. Geology, 51, 309–323.

    Article  Google Scholar 

  • Emenike, E. A. (2001). Geophysical exploration for groundwater in the sedimentary environment: a case study. Global Journal of Pure and Applied Sciences, 7(1), 97–102.

    Article  Google Scholar 

  • Fitterman, D. V., & Stewart, M. T. (1986). Transient electromagnetic sounding for groundwater. Geophysics, 51(4), 995–1005.

    Article  Google Scholar 

  • Frohlich, R. K., & Urish, D. W. (2002). The use of geoelectrics and test wells for the assessment of groundwater quality of a coastal industrial site. Journal of Applied Geophysics, 50(3), 261–278. ftp://ftp.conservation.ca.gov/pub/oil/SB4DEIR/docs/GW_Todd_and_Mays_2005.pdf.

    Article  Google Scholar 

  • Golterman, H. L., Glymo, R. S., & Ohnstad, M. A. M. (1978). Methods for physical and chemical analysis of freshwater. IBP hand book. USA: Blackwell Scientific Publication.

    Google Scholar 

  • I.S.I. (Indian Standards Institution), (1983). Indian Standard Specification for drinking water, 15: 10500.

  • Jeong, C. H. (2001). Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea. Journal of Hydrology, 253(1), 194–210.

    Article  CAS  Google Scholar 

  • Jury, W. A., Focht, D. D., & Farmer, W. J. (1987). Evaluation of pesticide groundwater pollution potential from standard indices of soil-chemical adsorption and biodegradation. Journal of Environmental Quality, 16(4), 422–428.

    Article  CAS  Google Scholar 

  • Karlen, D. L., Mausbach, M. J., Doran, J. W., Cline, R. G., Harris, R. F., & Schuman, G. E. (1997). Soil quality: a concept, definition, and framework for evaluation (a guest editorial). Soil Science Society of America Journal, 61(1), 4–10.

    Article  CAS  Google Scholar 

  • Kshirasagar, T. V. S. R., & Nagamalleswara Rao, B. (1989). Electrical resistivity survey for groundwater in Varaha River basin, AP, India. In: International workshop on appropriate methodologies for development and management of groundwater resources in developing countries (pp. 329–332).

  • Kumar, K. K. (2011). Geomorphological impact assessment on groundwater quality and fluoride genesis along the Bay of Bengal of Visakhapatnam district, Andhra Pradesh, India. Clean: Soil, Air, Water, 39(10), 925–930.

    CAS  Google Scholar 

  • Kumar, K. K., Israel, Y., & Sowjanya, P. (2013). Geochemical assessment of groundwater along Thandava River basin, Andhra Pradesh, India. Nature, Environment and Pollution Technology, 12(4), 709–716.

    CAS  Google Scholar 

  • Lewis Brent, R. (2001). Applications of electrical resistivity: a surface geophysical method- resource notes. Soils/Geology, 62, 1–2.

    Google Scholar 

  • Milovanovic, M. (2007). Water quality assessment and determination of pollution sources along the Axios/Vardar River, Southeastern Europe. Desalination, 213(1), 159–173.

    Article  CAS  Google Scholar 

  • Muhammed, A., Cheema, J. M., & Shafique, A. (2007). Determination of lithology and groundwater quality by electrical resistivity survey. International Journal of Agricultural and Biology, 9(1), 143–146.

    Google Scholar 

  • Murthy, K. S. R., Amminedu, E., & Rao, V. V. (2003). Integration of thematic maps through GIS for identification of groundwater potential zones. Journal of the Indian Society of Remote Sensing, 31(3), 197–210.

    Article  Google Scholar 

  • Ophori, D. U., & Toth, J. (1989). Patterns of ground‐water chemistry, Ross Creek Basin, Alberta, Canada. Ground Water, 27(1), 20–26.

    Article  CAS  Google Scholar 

  • Parkhomenko, E. I. (1967). Electrical properties of rocks (p. 200). New York: Plenum Press.

    Book  Google Scholar 

  • Piper, A. M. (1994). A graphical procedure in the geochemical interpretations of water analyses. Eos, Transactions American Geophysical Union, 25, 914–923.

    Article  Google Scholar 

  • Rai, S. N. (2009). Hydrological Studies. Glimpses of Geosciences Research in India, 5, 17–27.

    Google Scholar 

  • Raju, N. J., & Reddy, T. V. K. (1998). Fracture pattern and electrical resistivity studies for groundwater exploration. Environmental Geology, 34(2–3), 175–182.

    Article  Google Scholar 

  • Rao, N. S. (2003). Groundwater prospecting and management in an agro-based rural environment of crystalline terrain of India. Environmental Geology, 43(4), 419–431.

    CAS  Google Scholar 

  • Sabet, M. A. (1975). Vertical electrical resistivity soundings to locate ground water resources: a feasibility study. USA: Virginia Polytechnic Institute and State University, Virginia Water Resources Research Center.

    Google Scholar 

  • Sarma, V. V. J., & Swamy, A. N. (1981). Groundwater quality in Visakhapatnam basin, India. Water, Air, and Soil Pollution, 16(3), 317–329.

    Article  CAS  Google Scholar 

  • Sarma, V. V. J., & Swamy, A. N. (1986). Delineation of chemically polluted groundwater regions in Visakhapatnam Basin, India. Water, Air, and Soil Pollution, 29(1), 15–26.

    Article  CAS  Google Scholar 

  • Saxena, V. K., Mondal, N. C., Singh, V. S., & Kumar, D. (2005). Identification of water-bearing fractures in hard rock terrain by electrical conductivity logs, India. Environmental Geology, 48, 1084–1095.

    Article  CAS  Google Scholar 

  • Scheidegger, A. E. (1973). Hydrogeomorphology. Journal of Hydrology, 20(3), 193–215.

    Article  Google Scholar 

  • Schoeller, H., (1965). Hydrodynamique dans le karst (Ecoulement et emmagasinement). Actes Collogues Dubrovnik, I: 3–20, UNESCO.

  • Schwartz, F. W., & McClymont, G. L. (1977). Application of surface resistivity methods. Groundwater, 18, 197–202.

    Article  Google Scholar 

  • Singh, A. K., Mondal, G. C., Singh, S., Singh, P. K., Singh, T. B., Tewary, B. K., & Sinha, A. (2007). Aquatic geochemistry of Dhanbad, Jharkhand: source evaluation and quality assessment. Geological Society of India Bulletin, 69(5), 1088–1102.

    CAS  Google Scholar 

  • Sparks, D. L., & Liebhardt, W. C. (1981). Effect of long-term lime and potassium applications on quantity-intensity (Q/I) relationships in sandy soil. Soil Science Society of America Journal, 45(4), 786–790.

    Article  CAS  Google Scholar 

  • Stoller, R. L., & Roux, P. (1975). Earth resistivity surveys; a method of determining groundwater contamination. Groundwater, 8(2), 145–150.

    Article  Google Scholar 

  • Todd, D. K., & Mays, L. W. (1980). Groundwater hydrology.

  • Umar, A., Umar, R., & Ahmad, M. S. (2001). Hydrogeological and hydrochemical framework of regional aquifer system in Kali-Ganga sub-basin, India. Environmental Geology, 40(4–5), 602–611.

    Article  CAS  Google Scholar 

  • Vinoda Rao, T., & Gurunadha Rao, V. V. S. (2006). Mathematical model of Lower Tandava River basin, East Godavari District, Andhra Pradesh, India. Groundwater flow and mass transport modeling (pp. 322–329). New Delhi: Allied Publ.

    Google Scholar 

  • Zohdy, A. R. R., & Jackson, D. B. (1969). Applications of deep electrical soundings for groundwater exploration in Hawaii. Geophysics, 34, 584–600.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Kumar Kotra.

Ethics declarations

Conflict of Interest

The authors express that the paper does not carry any conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotra, K.K., Yedluri, I., Prasad, S. et al. Integrated Geophysical and Geochemical Assessment for the Comprehensive Study of the Groundwater. Water Air Soil Pollut 227, 211 (2016). https://doi.org/10.1007/s11270-016-2902-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2902-3

Keywords

Navigation