Integrated Geophysical and Geochemical Assessment for the Comprehensive Study of the Groundwater

  • Krishna Kumar KotraEmail author
  • Israel Yedluri
  • Surendra Prasad
  • Sowjanya Pasupureddi


Groundwater studies often involve using any one of geophysical, geological, geochemical, or chemical data in the assessment of its characteristics. An integrated method in using all the above had been carried out for more comprehensive and confirmative assessments along the Thandava River basin, India. The geophysical data included the recording of the vertical electrical soundings by Schlumberger array configuration in 50 stations along the basin. Thirty soil samples and rainfall data of 5 years included the geological data. Chemical characterizations for 117 groundwater water samples were carried for two seasons. This study proposes the advantages besides delineating the approach in carrying integrated rather than mere single parameter-based speculative study. This correlative and computer modeling aided study led to an in-depth along with confirmative assessments on various geological, geophysical, and chemical characteristics of the groundwater along with the pollution status. Comprehensive details of groundwater like geomorphology, potential water zones, flow pattern, soil types, geochemical evolution of ions, chemical status, and suitability can be accessed by applying this type of integrated study.

Graphical Abstract


Groundwater Chemical Geological Geophysical Integrated assessment 


Compliance with Ethical Standards

Conflict of Interest

The authors express that the paper does not carry any conflict of interest.


  1. Andrew, R., & Pedro, M, S. (2005). The challenge of collaborative groundwater governance: four case studies from Spain and Australia. []
  2. APHA, AWWA, & WPCF. (1995). Standard methods for the examination of water and waste water (19th ed., pp. I–47). Washington DC: APHA.Google Scholar
  3. Arias-Estévez, M., López-Periago, E., Martínez-Carballo, E., Simal-Gándara, J., Mejuto, J. C., & García-Río, L. (2008). The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems & Environment, 123(4), 247–260.CrossRefGoogle Scholar
  4. Atekwana, E. A., Atekwana, E. A., Rowe, R. S., Werkema, D. D., & Legall, F. D. (2004). The relationship of total dissolved solids measurements to bulk electrical conductivity in an aquifer contaminated with hydrocarbon. Journal of Applied Geophysics, 56(4), 281–294.CrossRefGoogle Scholar
  5. Bose, R. N., Chatterjee, D., & Sen, A. K. (1973). Electrical resistivity surveys for groundwater in the Aurangabad sub-division, Gaya district, Bihar, India. Geoexploration, 11(1), 171–181.CrossRefGoogle Scholar
  6. Chandra, S., Rao, V. A., Krishnamurthy, N. S., Dutta, S., & Ahmad, S. (2006). Integrated studies for characterization of lineaments used to locate ground water potential zones in hard rock region of Karnataka, India. Hydrogeology, 14, 1042–1051.CrossRefGoogle Scholar
  7. Chebotarev, I. I. (1955). Metamorphism of natural waters in the crust of weathering. Geochemica. Cosmochim. Acta, 8, 198–212.CrossRefGoogle Scholar
  8. Chen, J., Taniguchi, M., Liu, G., Miyaoka, K., Onodera, S. I., Tokunaga, T., & Fukushima, Y. (2007). Nitrate pollution of groundwater in the Yellow River delta, China. Hydrogeology Journal, 15(8), 1605–1614.CrossRefGoogle Scholar
  9. Das, B. K., & Dhiman, S. C. (2003). Water and sediment chemistry of higher Himalayan lakes in the Spiti Valley: control on weathering, provenance and tectonic setting of the basin. Environmental Geology, 44(6), 717–730.CrossRefGoogle Scholar
  10. Das, B. K., & Kaur, P. (2007). Geochemistry of surface and subsurface waters of Rewalsar Lake, Mandi district: Himachal Pradesh: constraints on weathering and erosion. Journal of Geological Society of India, 58, 1020–1030.Google Scholar
  11. Datta, P. S., & Tyagi, S. K. (1996). Major ion chemistry of groundwater in Delhi area: chemical weathering processes and groundwater flow regime. Journal of the Geological Society of India, 47, 179–188.Google Scholar
  12. Dowling, C. B., Poreda, R. J., & Basu, A. R. (2003). The groundwater geochemistry of the Bengal Basin: weathering, chemsorption, and trace metal flux to the oceans. Geochimica et Cosmochimica Acta, 67(12), 2117–2136.CrossRefGoogle Scholar
  13. Elias, D., & Ierotheos, Z. (2006). Groundwater vulnerability and risk mapping in a geologically complex area by using stable isotopes, remote sensing and GIS techniques. Envi. Geology, 51, 309–323.CrossRefGoogle Scholar
  14. Emenike, E. A. (2001). Geophysical exploration for groundwater in the sedimentary environment: a case study. Global Journal of Pure and Applied Sciences, 7(1), 97–102.CrossRefGoogle Scholar
  15. Fitterman, D. V., & Stewart, M. T. (1986). Transient electromagnetic sounding for groundwater. Geophysics, 51(4), 995–1005.CrossRefGoogle Scholar
  16. Frohlich, R. K., & Urish, D. W. (2002). The use of geoelectrics and test wells for the assessment of groundwater quality of a coastal industrial site. Journal of Applied Geophysics, 50(3), 261–278. Scholar
  17. Golterman, H. L., Glymo, R. S., & Ohnstad, M. A. M. (1978). Methods for physical and chemical analysis of freshwater. IBP hand book. USA: Blackwell Scientific Publication.Google Scholar
  18. I.S.I. (Indian Standards Institution), (1983). Indian Standard Specification for drinking water, 15: 10500.Google Scholar
  19. Jeong, C. H. (2001). Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea. Journal of Hydrology, 253(1), 194–210.CrossRefGoogle Scholar
  20. Jury, W. A., Focht, D. D., & Farmer, W. J. (1987). Evaluation of pesticide groundwater pollution potential from standard indices of soil-chemical adsorption and biodegradation. Journal of Environmental Quality, 16(4), 422–428.CrossRefGoogle Scholar
  21. Karlen, D. L., Mausbach, M. J., Doran, J. W., Cline, R. G., Harris, R. F., & Schuman, G. E. (1997). Soil quality: a concept, definition, and framework for evaluation (a guest editorial). Soil Science Society of America Journal, 61(1), 4–10.CrossRefGoogle Scholar
  22. Kshirasagar, T. V. S. R., & Nagamalleswara Rao, B. (1989). Electrical resistivity survey for groundwater in Varaha River basin, AP, India. In: International workshop on appropriate methodologies for development and management of groundwater resources in developing countries (pp. 329–332).Google Scholar
  23. Kumar, K. K. (2011). Geomorphological impact assessment on groundwater quality and fluoride genesis along the Bay of Bengal of Visakhapatnam district, Andhra Pradesh, India. Clean: Soil, Air, Water, 39(10), 925–930.Google Scholar
  24. Kumar, K. K., Israel, Y., & Sowjanya, P. (2013). Geochemical assessment of groundwater along Thandava River basin, Andhra Pradesh, India. Nature, Environment and Pollution Technology, 12(4), 709–716.Google Scholar
  25. Lewis Brent, R. (2001). Applications of electrical resistivity: a surface geophysical method- resource notes. Soils/Geology, 62, 1–2.Google Scholar
  26. Milovanovic, M. (2007). Water quality assessment and determination of pollution sources along the Axios/Vardar River, Southeastern Europe. Desalination, 213(1), 159–173.CrossRefGoogle Scholar
  27. Muhammed, A., Cheema, J. M., & Shafique, A. (2007). Determination of lithology and groundwater quality by electrical resistivity survey. International Journal of Agricultural and Biology, 9(1), 143–146.Google Scholar
  28. Murthy, K. S. R., Amminedu, E., & Rao, V. V. (2003). Integration of thematic maps through GIS for identification of groundwater potential zones. Journal of the Indian Society of Remote Sensing, 31(3), 197–210.CrossRefGoogle Scholar
  29. Ophori, D. U., & Toth, J. (1989). Patterns of ground‐water chemistry, Ross Creek Basin, Alberta, Canada. Ground Water, 27(1), 20–26.CrossRefGoogle Scholar
  30. Parkhomenko, E. I. (1967). Electrical properties of rocks (p. 200). New York: Plenum Press.CrossRefGoogle Scholar
  31. Piper, A. M. (1994). A graphical procedure in the geochemical interpretations of water analyses. Eos, Transactions American Geophysical Union, 25, 914–923.CrossRefGoogle Scholar
  32. Rai, S. N. (2009). Hydrological Studies. Glimpses of Geosciences Research in India, 5, 17–27.Google Scholar
  33. Raju, N. J., & Reddy, T. V. K. (1998). Fracture pattern and electrical resistivity studies for groundwater exploration. Environmental Geology, 34(2–3), 175–182.CrossRefGoogle Scholar
  34. Rao, N. S. (2003). Groundwater prospecting and management in an agro-based rural environment of crystalline terrain of India. Environmental Geology, 43(4), 419–431.Google Scholar
  35. Sabet, M. A. (1975). Vertical electrical resistivity soundings to locate ground water resources: a feasibility study. USA: Virginia Polytechnic Institute and State University, Virginia Water Resources Research Center.Google Scholar
  36. Sarma, V. V. J., & Swamy, A. N. (1981). Groundwater quality in Visakhapatnam basin, India. Water, Air, and Soil Pollution, 16(3), 317–329.CrossRefGoogle Scholar
  37. Sarma, V. V. J., & Swamy, A. N. (1986). Delineation of chemically polluted groundwater regions in Visakhapatnam Basin, India. Water, Air, and Soil Pollution, 29(1), 15–26.CrossRefGoogle Scholar
  38. Saxena, V. K., Mondal, N. C., Singh, V. S., & Kumar, D. (2005). Identification of water-bearing fractures in hard rock terrain by electrical conductivity logs, India. Environmental Geology, 48, 1084–1095.CrossRefGoogle Scholar
  39. Scheidegger, A. E. (1973). Hydrogeomorphology. Journal of Hydrology, 20(3), 193–215.CrossRefGoogle Scholar
  40. Schoeller, H., (1965). Hydrodynamique dans le karst (Ecoulement et emmagasinement). Actes Collogues Dubrovnik, I: 3–20, UNESCO.Google Scholar
  41. Schwartz, F. W., & McClymont, G. L. (1977). Application of surface resistivity methods. Groundwater, 18, 197–202.CrossRefGoogle Scholar
  42. Singh, A. K., Mondal, G. C., Singh, S., Singh, P. K., Singh, T. B., Tewary, B. K., & Sinha, A. (2007). Aquatic geochemistry of Dhanbad, Jharkhand: source evaluation and quality assessment. Geological Society of India Bulletin, 69(5), 1088–1102.Google Scholar
  43. Sparks, D. L., & Liebhardt, W. C. (1981). Effect of long-term lime and potassium applications on quantity-intensity (Q/I) relationships in sandy soil. Soil Science Society of America Journal, 45(4), 786–790.CrossRefGoogle Scholar
  44. Stoller, R. L., & Roux, P. (1975). Earth resistivity surveys; a method of determining groundwater contamination. Groundwater, 8(2), 145–150.CrossRefGoogle Scholar
  45. Todd, D. K., & Mays, L. W. (1980). Groundwater hydrology.Google Scholar
  46. Umar, A., Umar, R., & Ahmad, M. S. (2001). Hydrogeological and hydrochemical framework of regional aquifer system in Kali-Ganga sub-basin, India. Environmental Geology, 40(4–5), 602–611.CrossRefGoogle Scholar
  47. Vinoda Rao, T., & Gurunadha Rao, V. V. S. (2006). Mathematical model of Lower Tandava River basin, East Godavari District, Andhra Pradesh, India. Groundwater flow and mass transport modeling (pp. 322–329). New Delhi: Allied Publ.Google Scholar
  48. Zohdy, A. R. R., & Jackson, D. B. (1969). Applications of deep electrical soundings for groundwater exploration in Hawaii. Geophysics, 34, 584–600.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Krishna Kumar Kotra
    • 1
    Email author
  • Israel Yedluri
    • 2
  • Surendra Prasad
    • 3
  • Sowjanya Pasupureddi
    • 4
  1. 1.School of Biological and Chemical Sciences, Faculty of Science Technology and EnvironmentThe University of the South PacificPort VilaVanuatu
  2. 2.Department of GeophysicsAndhra UniversityVisakhapatnamIndia
  3. 3.School of Biological and Chemical Sciences, Faculty of Science Technology and EnvironmentThe University of the South PacificSuvaFiji
  4. 4.Department of Inorganic and Analytical ChemistryAndhra UniversityVisakhapatnamIndia

Personalised recommendations