Skip to main content

Advertisement

Log in

Black Oat (Avena strigosa Schreb.) Growth and Root Anatomical Changes in Sandy Soil with Different Copper and Phosphorus Concentrations

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Successive applications of copper-based (Cu) fungicides have increased Cu concentration in vineyard soils, inducing Cu toxicity in young vines and cover crops such as black oat, thus inhibiting growth and development. However, increasing soil phosphorus (P) content can reduce Cu toxicity symptoms. In this context, the aim of this study was to evaluate the effect of Cu toxicity and its alleviation by P fertilization in black oat cultivated in sandy soil. For the experiment, Typic Hapludalf soil samples were air-dried, prepared, and subjected to increasing doses of Cu (0, 30, and 60 mg kg−1) and P (0 and 100 mg kg−1). Subsequently, the soil was incubated and stored in pots, where black oat seedlings were grown for 30 days in a greenhouse. Plant roots subjected to Cu, especially with the highest Cu concentration and without P addition decreased the root cap size, showing early tissue differentiation and lateral root formation near the apical region. Decrease in dry matter (DM) production of roots (50 %) and shoots (67 %) was also observed in the highest Cu concentration. Plants without P addition, regardless of Cu concentration, also had lower root (33 %) and shoot (65 %) DM production. P addition in soil and its increased concentration reduced root anatomical changes and stimulated plant DM production. Therefore, we conclude that excessive Cu concentration alters black oat root anatomical structure, affecting plant growth, especially in sandy soils with low organic matter content. However, P supply can reduce root Cu toxicity symptoms, thus increasing plant dry matter production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ambrosini, V. G., Rosa, D. J., Prado, J. P. C., Borghezan, M., Melo, G. W. B., Soares, C. R. F. S., Comin, J. J., Simão, D. G., & Brunetto, G. (2015). Reduction of copper phytotoxicity by liming: a study of the root anatomy of young vines (Vitis labrusca L.). Plant Physiology and Biochemistry, 96, 270–280.

    Article  CAS  Google Scholar 

  • Barceló, J., & Poschenrieder, C. (1992). Respuestas de las plantas a la contaminación por metales pesados. Suelo y Planta, 2, 345–361.

    Google Scholar 

  • Borghi, M., Tognetti, R., Monteforti, G., & Sebastiani, L. (2007). Responses of Populus x euramericana (P. deltoides x P. nigra) clone Adda to increasing copper concentrations. Environmental and Experimental Botany, 61(1), 66–73.

    Article  CAS  Google Scholar 

  • Broadley, N., Brown, P., Cakmak, I., Rengel, Z., & Zhao, F. (2012). Function of nutrients: micronutrients. In P. Marschner (Ed.), Marschner’s mineral nutrition of higher plants (Third Editionth ed., pp. 191–248). London: Academic Press.

    Chapter  Google Scholar 

  • Brunetto, G., Miotto, A., Ceretta, C. A., Schmitt, D. E., Heinzen, J., Moraes, M. P., Canton, L., Tiecher, T. L., Comin, J. J., & Girotto, E. (2014a). Mobility of copper and zinc fractions in fungicide amended vineyard sandy soils. Archives of Agronomy and Soil Science, 60, 609–624.

    Article  CAS  Google Scholar 

  • Brunetto, G., Schmitt, D. E., Comin, J. J., Miotto, A., Moraes, M. P., & Heinzen, J. (2014b). Frações de cobre e zinco em solos de vinhedos no Meio Oeste de Santa Catarina. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(8), 805–810.

    Google Scholar 

  • Cambrollé, J., García, J. L., Figueroa, M. E., & Cantos, M. (2015). Evaluating wild grapevine tolerance to copper toxicity. Chemosphere, 120, 171–178.

    Article  Google Scholar 

  • Chaignon, V., Quesnoit, M., & Hinsinger, P. (2009). Copper availability and bioavailability are controlled by rhizosphere pH in rape grown in an acidic Cu-contaminated soil. Environmental Pollution, 157(12), 3363–3369.

    Article  CAS  Google Scholar 

  • Couto, R. R., Benedet, L., Comin, J. J., Belli Filho, P., Martins, S. R., Gatiboni, L. C., Radetski, M., Valois, C. M., Ambrosini, V. G., & Brunetto, G. (2015). Accumulation of copper and zinc fractions in vineyard soil in the mid-western region of Santa Catarina, Brazil. Environmental and Earth Sciences, 73(10), 6379–6386.

    Article  Google Scholar 

  • CQFS-RS/SC. (2004). Manual de adubação e calagem para os estados do Rio Grande do Sul e de Santa Catarina (10th ed.). Porto Alegre: SBCS-Núcleo Regional Sul/UFRGS.

    Google Scholar 

  • Embrapa. (1997). Manual de métodos de análise de solo. Rio de Janeiro: Embrapa-CPNS.

    Google Scholar 

  • Ferreira, P. A. A., Brunetto, G., Giachini, A. J., & Soares, C. R. F. S. (2014). Heavy metal uptake and the effect on plant growth. In D. K. Gupta & S. Chatterjee (Eds.), Heavy metal remediation: transport and accumulation in plants (pp. 127–154). New York: Nova Science Publishers.

    Google Scholar 

  • Foy, C. D., Chaney, R. L., & White, M. C. (1978). The physiology of metal toxicity in plants. Annual Review of Plant Biology, 29, 511–566.

    Article  CAS  Google Scholar 

  • Freitas, T. A., França, M. G. C., Almeida, A. F., Oliveira, S. J. R., Jesus, R. M., Souza, V. L., Silva, J. V. S., & Mangabeira, P. A. (2015). Morphology, ultrastructure and mineral uptake is affected by copper toxicity in young plants of Inga subnuda subs. luschnathiana (Benth.) T.D. Penn. Environmental Science and Pollution Research, 22(20), 15479–15494.

    Article  Google Scholar 

  • Girotto, E., Ceretta, C. A., Brunetto, G., Miotto, A., Tiecher, T. L., De Conti, L., Lourenzi, C. R., Lorensini, F., Gubiani, P. I., Silva, L. S., & Nicoloso, F. T. (2014). Copper availability assessment of Cu-contaminated vineyard soils using black oat cultivation and chemical extractants. Environmental Monitoring and Assessment, 186(12), 9051–9063.

    Article  CAS  Google Scholar 

  • Gratão, P. L., Monteiro, C. C., Rossi, M. L., Martinelli, A. P., Peres, L. E. P., Medici, L. O., Lea, P. J., & Azevedo, R. A. (2009). Differential ultrastructural changes in tomato hormonal mutants exposed to cadmium. Environmental and Experimental Botany, 67, 387–394.

    Article  Google Scholar 

  • Hawkesford, M., Horst, W., Kichey, T., Lambers, H., Schjoerring, J., Moller, I. S., & White, P. (2012). Functions of macronutrients. In P. Marschner (Ed.), Marschner’s mineral nutrition of higher plants (3rd ed., pp. 135–189). London: Academic Press.

    Chapter  Google Scholar 

  • Ivanov, V. B., & Dubrovsky, J. G. (2013). Longitudinal zonation pattern in plant roots: conflicts and solutions. Trends in Plant Science, 18(5), 237–243.

    Article  CAS  Google Scholar 

  • Jermini, M., Blaise, P., & Gessler, C. (2010). Quantitative effect of leaf damage caused by downy mildew (Plasmopara viticola) on growth and yield quality of grapevine ‘Merlot’ (Vitis vinifera). Vitis, 49, 77–85.

    Google Scholar 

  • Jiang, W., Liu, D., & Liu, X. (2001). Effects of copper on root growth, cell division, and nucleolus of Zea mays. Biologia Plantarum, 44(1), 105–109.

    Article  CAS  Google Scholar 

  • Johansen, D. A. (1940). Plant microtechnique. New York: McGraw-Hill Book Co.

    Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Kasim, W. A. (2006). Changes induced by copper and cadmium stress in the anatomy and grain yield of Sorghum bicolor (L.) Moench. International Journal of Agriculture and Biology, 8(1), 123–128.

    CAS  Google Scholar 

  • Kopittke, P. M., & Menzies, N. W. (2006). Effect of Cu toxicity on growth of Cowpea (Vigna unguiculata). Plant and Soil, 279, 287–296.

    Article  CAS  Google Scholar 

  • Kopittke, P. M., Asher, C. J., Blamey, F. P. C., & Menzies, N. W. (2009). Toxic effects of Cu2+ on growth, nutrition, root morphology, and distribution of Cu in roots of Sabi grass. Science of the Total Environment, 407, 4616–4621.

    Article  CAS  Google Scholar 

  • Kopittke, P., Menzies, N. W., Wang, P., McKenna, B. A., Wehr, J. B., Lombi, E., Kinraide, T. B., & Blamey, F. P. C. (2014). The rhizotoxicity of metal cations is related to their strength of binding to hard ligands. Environmental Toxicology and Chemistry, 33(2), 268–277.

    Article  CAS  Google Scholar 

  • Lequeux, H., Hermans, C., Lutts, S., & Verbruggen, N. (2010). Response to copper excess in Arabidopsis thaliana: Impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiology and Biochemistry, 48, 673–682.

    Article  CAS  Google Scholar 

  • Liu, D., Jiang, W., Meng, Q., Zou, J., Gu, J., & Zeng, M. (2009). Cytogenetical and ultrastructural effects of copper on root meristem cells of Allium sativum L. Biocell, 33(1), 25–32.

    CAS  Google Scholar 

  • Lynch, J., Marschner, P., & Rengel, Z. (2012). Effect of internal and external factors on root growth and development. In P. Marschner (Ed.), Marschner’s mineral nutrition of higher plants (3rd ed., pp. 331–346). London: Academic Press.

    Chapter  Google Scholar 

  • Melo, G. W., Brunetto, G., Schafer Junior, A., Kaminski, J., & Furlanetto, V. (2008). Matéria seca e acumulação de nutrientes em videiras jovens cultivadas em solos com diferentes níveis de cobre. Revista Brasileira de Agrociência, 14(4), 72–76.

    Google Scholar 

  • Michaud, A. M., Chappellaz, C., & Hinsinger, P. (2008). Copper phytotoxicity affects root elongation and iron nutrition in durum wheat (Triticum turgidum durum L.). Plant and Soil, 310, 151–165.

    Article  CAS  Google Scholar 

  • Mitra, A., Chatterjee, S., Datta, S., Sharma, S., Veer, V., Razafindrabe, B. H. M., Walther, C., & Gupta, D. K. (2014). Mechanism of metal transporters in plants. In D. K. Gupta & S. Chatterjee (Eds.), Heavy metal remediation: transport and accumulation in plants (pp. 1–28). New York: Nova Science Publishers.

    Google Scholar 

  • O’Brien, T. P., Feder, N., & McCully, M. E. (1964). Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma, 59(2), 368–373.

    Article  Google Scholar 

  • Ouzounidou, G., Eleftheriou, E. P., & Karatag, S. (1992). Ecophysical and ultrastructural effects of copper in Thlaspi ochroleucum (Cruciferae). Canadian Journal of Botany, 70, 947–957.

    Article  CAS  Google Scholar 

  • Potters, G., Pasternak, T. P., Guisez, Y., Palme, K. J., & Jansen, M. A. K. (2007). Stress-induced morphogenic responses: growing out of trouble? Trends in Plant Science, 12(3), 98–105.

    Article  CAS  Google Scholar 

  • Rosa, D. J., Ambrosini, V. G., Basso, A., Borghezan, M., Brunetto, G., & Pescador, R. (2014). Photosynthesis and growth of young “Niágara Branca” vines (Vitis labrusca L.) cultivated in soil with high levels of copper and liming. BIO Web of Conferences, 3, 01005.

    Article  Google Scholar 

  • Sheldon, A. R., & Menzies, N. W. (2005). The effect of copper toxicity on the growth and root morphology of Rhodes grass (Chloris gayana Knuth.) in resin buffered solution culture. Plant and Soil, 278, 341–349.

    Article  CAS  Google Scholar 

  • Soares, C. R. F. S., & Siqueira, J. O. (2008). Mycorrhiza and phosphate protection of tropical grass species against heavy metal toxicity in multi-contaminated soil. Biology and Fertility of Soils, 44, 833–841.

    Article  CAS  Google Scholar 

  • Soil Survey Staff. (2006). Keys to soil taxonomy (10edth ed.). Washington: USDA-SCS.

    Google Scholar 

  • Tedesco, M. J., Gianello, C., Bissani, C. A., Bohen, H., & Volkweiss, S. J. (1995). Análises de solo, plantas e outros materiais (2nd ed.). Porto Alegre: UFRGS.

    Google Scholar 

  • Zambrosi, F. C. B., Mattos, D., Jr., & Syvertsen, J. P. (2011). Plant growth, leaf photosynthesis, and nutrient-use efficiency of citrus rootstocks decrease with phosphite supply. Journal of Plant Nutrition and Soil Science, 174, 487–495.

    Article  CAS  Google Scholar 

  • Zambrosi, F. C. B., Mesquita, G. L., Tanaka, F. A. O., Quaggio, J. A., & Mattos, D., Jr. (2013). Phosphorus availability and rootstock affect copper-induced damage to the root ultra-structure of Citrus. Environmental and Experimental Botany, 95, 25–33.

    Article  CAS  Google Scholar 

  • Zhang, L., Pan, Y., Lv, W., & Xiong, Z. T. (2014). Physiological responses of dry matter allocation, root architecture, and invertase activity to copper stress in young seedlings from two populations of Kummerowia stipulacea (maxim.) Makino. Ecotoxicology and Environmental Safety, 104, 278–284.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors also thanks the Rio Grande do Sul Research Foundation (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS)), project no. 1971-2551/13-2; the Foundation for Research and Innovation Support of the State of Santa Catarina (Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC)), project no. 11329/2012-5; and the Brazilian National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)), project no. 473376/2013-0, for funding this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Brunetto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guimarães, P.R., Ambrosini, V.G., Miotto, A. et al. Black Oat (Avena strigosa Schreb.) Growth and Root Anatomical Changes in Sandy Soil with Different Copper and Phosphorus Concentrations. Water Air Soil Pollut 227, 192 (2016). https://doi.org/10.1007/s11270-016-2900-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2900-5

Keywords

Navigation