Trace Element Groundwater Pollution Hazard in Regional Hydrogeological Systems (Empordà Basin, NE Spain)

  • Josep Mas-PlaEmail author
  • Anna Menció
  • Joan Bach
  • Manel Zamorano
  • David Soler
  • David Brusi


Trace elements appear in natural waters as a result of rock weathering and human activities. Their occurrence is governed by a complex set of geochemical conditions which finally may induce trace element concentrations above health standards. In regional, large-scale aquifers, their presence is representative of the hydrogeological setting of the overall flow path from the recharge zone to the sampling well. In this study, we analyze hydrochemical, including major components and trace elements (Al, As, B, Ba, Cd, Co, Cr, Cu, Hg, Mn, Ni, Sb, Sn, Sr, Pb, Zn), and stable isotopic data from exploitation wells in the Empordà basin (NE Spain). Our goal is to explore the hydrogeological meaning of trace elements as a means to contribute to the understanding of the regional flow dynamics as an initial step to face trace element pollution events. Groundwater data is hence described in the context of each aquifer relating the major hydrochemical facies with their accompanying trace elements. Results point out some expected geochemical relationships as well as some trace element associations that cannot be envisaged from the usual incomplete lithological information of the aquifer. Multivariate statistical analysis, as PCA, provides complementary information about geochemical processes (loadings) and regional occurrence (scores). Such statistical information can be taken as indicative of potential health hazard associated to trace element in groundwater. From a management perspective, such analysis points out which elements should a priori be considered for analysis according to the geological formation that holds the water supply well.


Trace elements Groundwater Geochemistry Pollution Multivariate statistical analysis 



This study has been developed under the Spanish Government Project CGL2011-29975-c04-04 and continued under Project CGL2014-57215-C4-2-R and the University of Girona fund MPCUdG2016/061. We also thank the contributions of the reviewers who helped in the improvement of the manuscript with their critical comments.

Supplementary material

11270_2016_2891_MOESM1_ESM.pdf (125 kb)
ESM 1 (PDF 125 kb)
11270_2016_2891_MOESM2_ESM.pdf (120 kb)
ESM 2 (PDF 120 kb)


  1. APHA. (2005). Standard methods for the examination of water and wastewater (19th ed.). Washington, DC, USA: American Public Health Association.Google Scholar
  2. Ayotte, J. D., Gronberg, J. M., & Apocada, L. E. (2011a). Trace elements and radon in groundwater across the United States, 1992-2003: U.S. Geological Survey investigations report 2011-5059, 115 p.Google Scholar
  3. Ayotte, J. D., Szabo, Z., Focazio, M. J., & Eberts, S. M. (2011a). Effects of human-induced alteration of groundwater flow on concentrations of naturally-occurring trace elements at water-supply wells. Applied Geochemistry, 26, 747–762.CrossRefGoogle Scholar
  4. Bach, J. (1986). Sedimentación holocena en el litoral emergido de “l’Alt Empordà” (NE de Catalunya). Acta Geologica Hispánica, 21–22, 195–203.Google Scholar
  5. Bach, J., Mas-Pla, J., Menció, A., Brusi, D., Soler, D., Zamorano, M., Roqué, C., Boy-Roura, M., Folch, A., Moreno, V., & Font, L. (2014). Distribución de radon-222 en el Sistema acuífero del Empordà (NE España): aportaciones al modelo de recarga regional. II Congreso Ibérico de las Aguas Subterráneas. CIAS2014. Libro de actas, pp. 71-84.Google Scholar
  6. Bruland, K.W., & Lohan, M. C. (2007). Controls of trace metals in seawater. In: H. D. Holland and K. K. Turekian (Eds.), Treatise on geochemistry (pp. 23-47). vol. 6.02.Google Scholar
  7. Brusi, D., Ramonell, C., Menció, A., Roqué, C., & Mas-Pla, J. (2011). Isotopic characterization of ground water in western Pyrenees. 9th Int. Symposium on Applied Geochemistry. Tarragona. Abstracts book.Google Scholar
  8. DeSimone, L. A., Hamilton, P. A., & Gilliom, R. J. (2009). Quality of water from domestic wells in principal aquifers of the United States, 1991-2004. Overview of Major Findings. U.S. Geological Survey. Circular 1332.Google Scholar
  9. Edmunds, M., & Shand P. (2008). Natural groundwater quality. Blackwell Publishing Ltd. 464 p.Google Scholar
  10. Edmunds W. M., Smedley P. (2005). Fluoride in natural waters. In: O. Selinus, B. Alloway, J. A. Centeno, R. B. Finkelman, R. Fuge, U. Lindh, P. Smedley (Eds.), Essentials of medical geology. Impacts of the Natural Environment on Public Health. Elsevier Academic Press.Google Scholar
  11. Edmunds, W. M., Cook, J. M., Miles, D. L., & Trafford, J. M. (1988). Baseline trace element occurrence in the principal aquifers of the UK. Britisk Geological Survey Wallingford.Google Scholar
  12. Folch, A., Menció, A., Puig, R., Soler, A., & Mas-Pla, J. (2011). Groundwater development effects on different scale hydrogeological systems using head, hydrochemical and isotopic data and implications for water resources management: the Selva basin (NE Spain). Journal of Hydrology, 403, 83–102.CrossRefGoogle Scholar
  13. Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M., & Fernandez, L. (2000). Temporal evolution of ground water composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Resources, 34, 807–816.Google Scholar
  14. Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water. U. S. Geological Survey Water-Supply Paper 2254. Third Edition. 264 p.Google Scholar
  15. Hopenhayn-Rich, C., Biggs, M. L., Fuchs, A., Bergoglio, R., Tello, E. E., Nicolli, H., & Smith, A. H. (1996). Bladder cancer mortality associated with arsenic in drinking water in Argentina. Epidemiology, 7(2), 117–124.CrossRefGoogle Scholar
  16. IGC (2016). Catàleg de cartografia geològica i geotemàtica. Institut Geològic de Catalunya. Accessed April, 2016.
  17. Julià, R. (1980). La conca lacustre de Banyoles-Besalú. Monografíes del Centre d'Estudis Comarcals de Banyoles, 187 pp.Google Scholar
  18. Karagas, M. R., Le, C. X., Morris, S., Blum, J., Lu, X., Spate, V., Carey, M., Stannard, V., Klaue, B., & Tosteson, T. D. (2001). Markers of low-level arsenic exposure for evaluating human cancer risks in a U.S. population. International Journal of Occupational Medicine and Environmental Health, 14(2), 171–175.Google Scholar
  19. Kendall, G. M., & Smith, T. J. (2002). Doses to organs and tissues from radon and its decay products. Journal of Radiological Protection, 22, 389–406.CrossRefGoogle Scholar
  20. Kilchmann, S., Waber, H. N., Parriaux, A., & Bensimon, M. (2003). Natural tracers in recent groundwaters from different Alpine aquifers. Hydrogeology Journal, 12, 643–661.CrossRefGoogle Scholar
  21. Kruse, E., & Mas-Pla, J. (2009). Procesos hidrogeológicos y calidad del agua en acuíferos litorales. In: J. Mas-Pla, G. M. Zuppi (Eds.), Gestión ambiental integrada de la zonas costeras – Gestão ambiental integrada dos areas costeiras (pp. 29-54). Rubes Editorial.Google Scholar
  22. Lanaja, J. M. (1987). Contribución de la explotación petrolífera al conocimiento de la geología en España (Sondeo 147b) (p. 465). Madrid: Instituto Geológico y Minero de España.Google Scholar
  23. Mas-Pla, J., Bach, J., Viñals, E., Trilla, J., & Estalrich, J. (1999). Salinization processes in a coastal leaky aquifer system (Alt Empordà, NE Spain). Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 24(4), 337–341.CrossRefGoogle Scholar
  24. Mas-Pla, J., Rodríguez-Florit, A., Zamorano, M., Roqué, C., Menció, A., & Brusi, D. (2013). Anticipating the effects of groundwater withdrawal on seawater intrusion and soil settlement in urban coastal areas. Hydrological Processes, 27(16), 2352–2366.CrossRefGoogle Scholar
  25. Meliker, J. R., Wahl, R. L., Cameron, L. L., & Nriagu, J. O. (2007). Arsenic in drinking water and cerebrovascular disease, diabetes mellitus, and kidney disease in Michigan. A standardized mortality ratio analysis. Environmental Health, 6(1), 4.CrossRefGoogle Scholar
  26. Menció, A., & Mas-Pla, J. (2008). Assessment by multivariate analysis of surface water -groundwater interactions in urbanized Mediterranean streams. Journal of Hydrology, 352(3), 355–366.CrossRefGoogle Scholar
  27. Menció, A., Mas-Pla, J., Otero, N., & Soler, A. (2011). Nitrate as a tracer of groundwater flow in a fractured multi-layered aquifer. Hydrological Sciences Journal, 56(1), 108–122.CrossRefGoogle Scholar
  28. Menció, A., Folch, A., & Mas-Pla, J. (2012). Identifying key parameters to differentiate groundwater flow systems using multifactorial analysis. Journal of Hydrology, 472–473, 301–313.CrossRefGoogle Scholar
  29. Menció, A., Mas-Pla, J., Otero, N., Regàs, O., Boy-Roura, M., Puig, R., Bach, J., Domènech, C., Folch, A., Zamorano, M., & Brusi, D. (2016). Nitrate pollution of groundwater; all right …, but nothing else? Science of the Total Environment, 539C, 241–251.CrossRefGoogle Scholar
  30. Montaner, J. (2010). El flux hidrogeològic de la plana litoral del Baix Ter. Evolució fluvial, caracterització hidrològica i pautes de gestió. Càtedra d’Ecosistemes Litorals Mediterranis – Museu de la Mediterrània, Col. Recerca i Territori 2, 236 pp.Google Scholar
  31. Montaner, J., Teixidor, N., Boixadera, J., Solà, J., Mas-Pla, J., & Pérez, M. (1999). Presència i distribució espacial de concentracions anormals d’ió nitrat a les aigües subterrànies dels aqüífers del Baix Fluvià (Alt Empordà). Dossiers Agraris ICEA, 5: Problemes moderns en l’ús dels sòls: nitrats, pp. 115-130.Google Scholar
  32. National Academy of Sciences (1999). Arsenic in drinking water. National Academy of Sciences Press, 273 p.Google Scholar
  33. Pla-Giribert, N., & Mas-Pla, J. (1998). Análisis de los recursos hidrológicos destinados al abastecimiento de la Costa Brava norte. Tecnología del Agua, 178, 59–66.Google Scholar
  34. Pujadas, J., Casas, J. M., Muñoz, J. A., & Sàbat, F. (1989). Thrust tectonics and Paleogene syntectonic sedimentation in the Empordà area, Southeastern Pyrenees. Geodinamica Acta, 3(3), 195–206.CrossRefGoogle Scholar
  35. Rai, D., Eary, L. E., & Zachara, J. M. (1989). Environmental chemistry of chromium. Science of the Total Environment, 86, 15–23.CrossRefGoogle Scholar
  36. Re, V., Sacchi, E., Mas-Pla, J., Menció, A., & El Amrani, N. (2014). Identifying the effects of human pressure on groundwater quality to support water management strategies in coastal regions: a multi-tracer and statistical approach (Bou-Areg region, Morocco). Science of the Total Environment, 500–501, 211–223.CrossRefGoogle Scholar
  37. Salbu, B., & Steinnes, E. (1994). Trace elements in natural waters. CRC Press, 302 pp.Google Scholar
  38. Sanz, M. (1985). Estudi hidrogeològic de la regió de Banyoles-Garrotxa. Quaderns del Centre d’Estudis Comarcals de Banyoles, 128, 1–8.Google Scholar
  39. Saula, E., Picart, J., Mató, E., Llenas, M., Losanto, M., Beràstegui, X., & Agustí, J. (1996). Evolución geodinámica de las fosas del Empordà y Sierras Transversales. Acta Geologica Hispánica, 29, 55–75.Google Scholar
  40. Saxena, V. K., & Ahmed, S. (2003). Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environmental Geology, 43, 731–736.Google Scholar
  41. Selinus, O., Alloway, B. J., Centeno, J. A., Finkleman, R. B., Fuge, R., Lindh, U., & Smedley, P. L. (2005). Essentials of medical geology. Impacts of the natural environment on public health (p. 812). Boston: Elsevier.Google Scholar
  42. Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behavior, and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.CrossRefGoogle Scholar
  43. Soler, D., Zamorano, M., Roqué, C., Menció, A., Boy-Roura, M., Bach, J., Brusi, D., & Mas-Pla, J. (2014). Evaluación de la influencia de las estructuras tectónicas en la recarga del sistema hidrogeológico de la depresión del Empordà (NE España). II Congreso Ibérico de las Aguas Subterráneas. CIAS2014. Libro de actas, pp. 853-872.Google Scholar
  44. Stollenwerk, K. G., & Grove, D. B. (1985). Adsorption and desorption of hexavalent chromium in an alluvial aquifer near Telluride, Colorado. Journal of Environmental Quality, 14, 150–155.CrossRefGoogle Scholar
  45. Stumm, W. (1992). Chemistry of the solid-water Interface. Processes at the Mineral-Water and Particle-Water Interface in Natural Systems. Wiley, 428 pp.Google Scholar
  46. Toran, L. E., & Saunders, J. A. (1999). Modeling alternative paths of chemical evolution of Na-HCO3-type groundwaters near Oak Ridge, Tenesse, USA. Hydrogeology Journal, 7, 355–364.CrossRefGoogle Scholar
  47. Vilanova, E., Menció, A., & Mas-Pla, J. (2008). Determinación de sistemas de flujo regionales y locales en las depresiones tectónicas del Baix Empordà y la Selva (NE de España) en base a datos hidroquímicos e isotópicos. Boletín Geológico y Minero, 119(1), 51–62.Google Scholar
  48. Vissers, M. J. M., van der Veer, G., van Gaans, P. F. M. et al. (2005). The controls and sources of minor and trace elements in groundwater in sandy aquifers. In: M. J. M Vissers (Ed.), Patterns of groundwater quality in sandy aquifers under environmental pressure (pp. 89–122). PhD thesis, Utrecht University.Google Scholar
  49. Vitòria, L. (2004) Estudi multi-istòpic ( N, S, C, O, D, Sr/ Sr) de les aigües subterrànies contaminades per nitrats d'orígen agrícola i ramader. PhD dissertation. Universitat de Barcelona.Google Scholar
  50. Walker, M., Seiler, R. L., & Meinert, M. (2008). Effectiveness of household reverse-osmosis systems in a western U.S. region with high arsenic in groundwater. Science of the Total Environment, 389(2-3), 245–252.CrossRefGoogle Scholar
  51. WHO. (2008). Drinking water quality: third edition incorporating the first and second addenda, volume 1: recommendations. Geneva: World Health Organization.Google Scholar
  52. Wu, M. M., Kuo, T. L., Hwang, Y. H., & Chen, C. J. (1989). Dose-response relation between arsenic concentration in well water and mortality from cancers and vascular diseases. American Journal of Epidemiology, 130(6), 1123–1132.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Josep Mas-Pla
    • 1
    • 2
    Email author
  • Anna Menció
    • 2
  • Joan Bach
    • 3
  • Manel Zamorano
    • 2
  • David Soler
    • 2
  • David Brusi
    • 2
  1. 1.Institut Català de Recerca de l’Aigua (ICRA)GironaSpain
  2. 2.Grup de Geologia Aplicada i Ambiental (GAiA-Geocamb), Departament de Ciències AmbientalsUniversitat de GironaGironaSpain
  3. 3.Unitat de Geodinàmica Externa i Hidrogeologia, Departament de GeologiaUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations