Skip to main content

Toxic Influence of Key Organic Soil Pollutants on the Total Flavonoid Content in Wheat Leaves

Abstract

Textile dyes and antibiotics are two main classes of environmental pollutants which could be found in soil and water. Those persistent pollutants can have a negative influence on plant growth and development and affect the level of secondary metabolites. In the present work, we studied the effect of textile dyes and antibiotics on total leaf flavonoid contents in wheat (Triticum aestivum L.). Contaminant solutions were applied daily using concentrations of 0.5 mg L−1 (lower) and 1.5 mg L−1 (higher dose) for either 1 or 2 weeks. We observed that exposure to the higher concentration of textile dyes resulted in a reduction in flavonoid content while antibiotics enhanced flavonoid contents at lower doses of exposure and reduced at higher doses of exposure. These results suggest that diffuse chronic pollution by artificial organic contaminants can importantly alter antioxidative capacity of plants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Agati, G., Azzarello, E., Pollastri, S., & Tattini, M. (2012). Flavonoids as antioxidants in plants: location and functional significance. Plant Science, 196, 67–76.

    CAS  Article  Google Scholar 

  2. Andersen, Ø. M., & Markham, K. R. (2006). Flavonoids—chemistry, biochemistry and applications. Boca Raton: CRC Press Taylor & Francis Group.

    Google Scholar 

  3. Aristilde, L., Melis, A., & Sposito, G. (2010). Inhibition of photosynthesis by a fluoroquinolone antibiotic. Environmental Science & Technology, 44(4), 1444–1450.

    CAS  Article  Google Scholar 

  4. Brunetti, C., Guidi, L., Sebastiani, F., & Tattini, M. (2015). Isoprenoids and phenylpropanoids are key components of the antioxidant defense system of plants facing severe excess light stress. Environmental and Experimental Botany, 119, 54–62.

    CAS  Article  Google Scholar 

  5. Clemens, S., Palmgren, M. G., & Kramer, U. (2002). A long way ahead: understanding and engineering plant metal accumulation. Trends in Plant Science, 7(7), 309–315.

    CAS  Article  Google Scholar 

  6. Copaciu, F., Coman, V., Simedru, D., Beldean-Galea, S., Opriş, O., & Ristoiu, D. (2013a). Determination of two textile dyes in wastewater by solid phase extraction and liquid chromatography/electrospray ionization tandem mass spectrometry analysis. Journal of Liquid Chromatography & Related Technologies, 36(12), 1646–1660.

    CAS  Google Scholar 

  7. Copaciu, F., Opriş, O., Coman, V., Ristoiu, D., Niinemets, Ü., & Copolovici, L. (2013b). Diffuse water pollution by anthraquinone and azo dyes in environment importantly alters foliage volatiles, carotenoids and physiology in wheat (Triticum aestivum). Water, Air, and Soil Pollution, 224(3), 1478–1489.

    Article  Google Scholar 

  8. Di Ferdinando, M., Brunetti, C., Fini, A., & Tattini, M. (2012). Flavonoids as antioxidants in plants under abiotic stresses. In P. Ahmad & M. N. V. Prasad (Eds.), Abiotic stress responses in plants: metabolism, productivity and sustainability (pp. 159–179). New York: Springer.

    Chapter  Google Scholar 

  9. Dolliver, H., Kumar, K., & Gupta, S. (2007). Sulfamethazine uptake by plants from manure-amended soil. Journal of Environmental Quality, 36(4), 1224–1230.

    CAS  Article  Google Scholar 

  10. Edwards, L. C., Freeman, H. S., & Claxton, L. D. (2004). Developing azo and formazan dyes based on environmental considerations: Salmonella mutagenicity. Mutation Research, 546(1–2), 17–28.

    CAS  Article  Google Scholar 

  11. Epolito, W. J., Lee, Y. H., Bottomley, L. A., & Pavlostathis, S. G. (2005). Characterization of the textile anthraquinone dye Reactive Blue 4. Dyes and Pigments, 67(1), 35–46.

    CAS  Article  Google Scholar 

  12. Esteban, R., Fernando, M. J., Maria Becerril, J., & Garcia-Plazaola, I. J. (2015). Versatility of carotenoids: an integrated view on diversity, evolution, functional roles and environmental interactions. Environmental and Experimental Botany, 119, 63–75.

    CAS  Article  Google Scholar 

  13. Field, C. B., Campbell, J. E., & Lobell, D. B. (2008). Biomass energy: the scale of the potential resource. Trends in Ecology & Evolution, 23(2), 65–72.

    Article  Google Scholar 

  14. Fischbach, R. J., Kossmann, B., Panten, H., Steinbrecher, R., Heller, W., Seidlitz, H. K., et al. (1999). Seasonal accumulation of ultraviolet-B screening pigments in needles of Norway spruce (Picea abies (L.) Karst.). Plant, Cell and Environment, 22(1), 27–37.

    CAS  Article  Google Scholar 

  15. Garg, V. K., & Kaushik, P. (2008). Influence of textile mill wastewater irrigation on the growth of sorghum cultivars. Applied Ecology and Environmental Research, 6(1), 1–12.

    Article  Google Scholar 

  16. Hamada, A. M. (2001). Alteration in growth and some relevant metabolic processes of broad bean plants during extreme temperatures exposure. Acta Physiologiae Plantarum, 23(2), 193–200.

    Article  Google Scholar 

  17. Havaux, M., & Kloppstech, K. (2001). The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta, 213(6), 953–966.

    CAS  Article  Google Scholar 

  18. Imran, M., Shaharoona, B., Crowley, D. E., Khalid, A., Hussain, S., & Arshad, M. (2015). The stability of textile azo dyes in soil and their impact on microbial phospholipid fatty acid profiles. Ecotoxicology and Environmental Safety, 120, 163–168.

    CAS  Article  Google Scholar 

  19. Jjemba, P. K. (2002). The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land: a review. Agriculture Ecosystems & Environment, 93(1), 267–278.

    Article  Google Scholar 

  20. Jozefczak, M., Remans, T., Vangronsveld, J., & Cuypers, A. (2012). Glutathione is a key player in metal-induced oxidative stress defenses. International Journal of Molecular Sciences, 13(3), 3145–3175.

    CAS  Article  Google Scholar 

  21. Katoh, T., Kasuya, M., Kagamimori, S., Kozuka, H., & Kawano, S. (1989). Inhibition of the shikimate pathway in the leaves of vascular plants exposed to air pollution. New Phytologist, 112(3), 363–367.

    CAS  Article  Google Scholar 

  22. Kaushik, P., Garg, V. K., & Singh, B. (2005). Effect of textile effluents on growth performance of wheat cultivars. Bioresource Technology, 96(10), 1189–1193.

    CAS  Article  Google Scholar 

  23. Kaya, A., Yigit, E., & Akbulut, G. B. (2012). The effects of reactive black 5 textile dye on peroxidase activity, lipid peroxidation and total chlorophyll concentration of Phaseolus Vulgaris L. Cv. “Gina”. Fresenius Environmental Bulletin, 21(1), 54–60.

    CAS  Google Scholar 

  24. Kholodova, V., Volkov, K., Abdeyeva, A., & Kuznetsov, V. (2011). Water status in Mesembryanthemum crystallinum under heavy metal stress. Environmental and Experimental Botany, 71(3), 382–389.

    CAS  Google Scholar 

  25. Kondo, T., Yoshida, K., Nakagawa, A., Kawai, T., Tamura, H., & Goto, T. (1992). Structural basis of blue-color development in flower petals from Commelina communis. Nature, 358, 515–518.

    CAS  Article  Google Scholar 

  26. Landi, M., Tattini, M., & Gould, K. S. (2015). Multiple functional roles of anthocyanins in plant-environment interactions. Environmental and Experimental Botany, 119, 4–17.

    CAS  Article  Google Scholar 

  27. Lavola, A. (1998). Accumulation of flavonoids and related compounds in birch induced by UV-B irradiance. Tree Physiology, 18(1), 53–58.

    CAS  Article  Google Scholar 

  28. Lavola, A., Julkunen-Tiitto, R., & Pääkkönen, E. (1994). Does ozone stress change the primary or secondary metabolites of birch (Betula pendula Roth.)? New Phytologist, 126(4), 637–642.

    CAS  Article  Google Scholar 

  29. Lee, Y. H., & Pavlostathis, S. G. (2004). Decolorization and toxicity of reactive anthraquinone textile dyes under methanogenic conditions. Water Research, 38(7), 1838–1852.

    CAS  Article  Google Scholar 

  30. Li, B., Zhang, T., Xu, Z., & Fang, H. H. P. (2009). Rapid analysis of 21 antibiotics of multiple classes in municipal wastewater using ultra performance liquid chromatography-tandem mass spectrometry. Analytica Chimica Acta, 645(1–2), 64–72.

    CAS  Article  Google Scholar 

  31. Liu, L., Gitz, D. C., & McClure, J. W. (1995). Effects of UV-B on flavonoids, ferulic acid, growth and photosynthesis in barley primary leaves. Physiologia Plantarum, 93(4), 725–733.

    CAS  Article  Google Scholar 

  32. Loreti, E., Povero, G., Novi, G., Solfanelli, C., Alpi, A., & Perata, P. (2008). Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytologist, 179(4), 1004–1016.

    CAS  Article  Google Scholar 

  33. Martinez, J. L. (2009). Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution, 157(11), 2893–2902.

    CAS  Article  Google Scholar 

  34. Martínez-Carballo, E., González-Barreiro, C., Scharf, S., & Gans, O. (2007). Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environmental Pollution, 148, 570–579.

    Article  Google Scholar 

  35. Mierziak, J., Kostyn, K., & Kulma, A. (2014). Flavonoids as important molecules of plant interactions with the environment. Molecules, 19(10), 16240–16265.

    Article  Google Scholar 

  36. Migliore, L., Brambilla, G., Casoria, P., Civitareale, C., Cozzolino, S., & Gaudio, L. (1996). Effect of sulphadimethoxine contamination on barley (Hordeum distichum L., Poaceae, Liliopsida). Agriculture, Ecosystems & Environment, 60(2–3), 121–128.

    CAS  Article  Google Scholar 

  37. Migliore, L., Cozzolino, S., & Fiori, M. (2003). Phytotoxicity to and uptake of enrofloxacin in crop plants. Chemosphere, 52(7), 1233–1244.

    CAS  Article  Google Scholar 

  38. Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11(1), 15–19.

    CAS  Article  Google Scholar 

  39. Moawad, H., Abd El-Rahim, W. M., & Khalafallah, M. (2003). Evaluation of biotoxicity of textile dyes using two bioassays. Journal of Basic Microbiology, 43(3), 218–229.

    CAS  Article  Google Scholar 

  40. Myhrstad, M. C., Carlsen, H., Nordström, O., Blomhoff, R., & Moskaug, J. Ø. (2002). Flavonoids increase the intracellular glutathione level by transactivation of the gamma-glutamylcysteine synthetase catalytical subunit promoter. Free Radical Biology & Medicine, 32, 386–393.

    CAS  Article  Google Scholar 

  41. Nakabayashi, R., & Saito, K. (2015). Integrated metabolomics for abiotic stress responses in plants. Current Opinion in Plant Biology, 24, 10–16.

    CAS  Article  Google Scholar 

  42. Neill, S. O., Gould, K. S., Kilmartin, P. A., Mitchell, K. A., & Markham, K. R. (2002). Antioxidant activities of red versus green leaves in Elatostema rugosum. Plant, Cell & Environment, 25(4), 539–547.

    CAS  Article  Google Scholar 

  43. Nilratnisakorn, S., Thiravetyan, P., & Nakbanpote, W. (2007). Synthetic reactive dye wastewater treatment by narrowleaved cattails (Typha angustifolia Linn.): effects of dye, salinity and metals. Science of the Total Environment, 384(1–3), 67–76.

    CAS  Article  Google Scholar 

  44. Nogués, S., & Baker, N. R. (2000). Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. Journal of Experimental Botany, 51(348), 1309–1317.

    Article  Google Scholar 

  45. Opriş, O., Copaciu, F., Coman, V., & Ristoiu, D. (2011). UV–vis study regarding the influence of two potential environmental pollutants on the total flavonoid content in Triticum aestivum L. and Secale cereale L. Studia Universitatis Babes-Bolyai, Chemia, 56(4), 17–25.

    Google Scholar 

  46. Opriş, O., Soran, M. L., Coman, V., Copaciu, F., & Ristoiu, D. (2013a). Determination of some frequently used antibiotics in waste waters using solid phase extraction followed by high performance liquid chromatography with diode array and mass spectrometry detection. Central European Journal of Chemistry, 11(8), 1343–1351.

    Google Scholar 

  47. Opriş, O., Copaciu, F., Soran, M. L., Ristoiu, D., Niinemets, Ü., & Copolovici, L. (2013b). Influence of nine antibiotics on key secondary metabolites and physiological characteristics in Triticum aestivum: leaf volatiles as a promising new tool to assess toxicity. Ecotoxicology and Environmental Safety, 87, 70–79.

    Article  Google Scholar 

  48. Pan, X., Deng, C., Zhang, D., Wang, J., Mu, G., & Chen, Y. (2008). Toxic effects of amoxicillin on the photosystem II of Synechocystis sp. characterized by a variety of in vivo chlorophyll fluorescence tests. Aquatic Toxicology, 89(4), 207–213.

    CAS  Article  Google Scholar 

  49. Pedras, M. S., & Yaya, E. E. (2015). Plant chemical defenses: are all constitutive antimicrobial metabolites phytoanticipins? Natural Product Communications, 10(1), 209–218.

    Google Scholar 

  50. Petrussa, E., Braidot, E., Zancani, M., Peresson, C., Bertolini, A., Patui, S., & Vianello, A. (2013). Plant flavonoids—biosynthesis, transport and involvement in stress responses. International Journal of Molecular Sciences, 14, 14950–14973.

    Article  Google Scholar 

  51. Petry, R. D., Ortega, G. G., & Silva, W. B. (2001). Flavonoid content assay: influence of the reagent concentration and reaction time on the spectrophotometric behavior of the aluminium chloride-flavonoid complex. Pharmazie, 56(6), 465–470.

    CAS  Google Scholar 

  52. Pietrini, F., Iannelli, M. A., & Massacci, A. (2002). Anthocyanin accumulation in the illuminated surface of maize leaves enhances protection from photo-inhibitory risks at low temperature, without further limitation to photosynthesis. Plant, Cell & Environment, 25(10), 1251–1259.

    CAS  Article  Google Scholar 

  53. Puvaneswari, N., Muthukrishnan, J., & Gunasekaran, P. (2006). Toxicity assessment and microbial degradation of azo dyes. Indian Journal of Experimental Biology, 44, 618–626.

    CAS  Google Scholar 

  54. Romanian Pharmacopoeia (1993) Xth edition. Medical Publishing House, Bucharest.

  55. Saewan, N., & Jimtaisong, A. (2013). Photoprotection of natural flavonoids. Journal of Applied Pharmaceutical Science, 3, 129–141.

    Google Scholar 

  56. Samanta, A., Das, G., & Das, S. K. (2011). Roles of flavonoids in plants. International Journal of Pharmaceutical Science and Technology, 6(1), 12–35.

    Google Scholar 

  57. Saniewski, M., Miszczak, A., Kawa-Miszczak, L., Wegrzynowicz-Lesiak, E., Miyamoto, K., & Ueda, J. (1998). Effects of methyl jasmonate on anthocyanin accumulation, ethylene production, and CO2 evolution in uncooled and cooled tulip bulbs. Journal of Plant Growth Regulation, 17(1), 33–37.

    CAS  Article  Google Scholar 

  58. Seifrtová, M., Nováková, L., Lino, C., Pena, A., & Solich, P. (2009). An overview of analytical methodologies for the determination of antibiotics in environmental waters. Analytica Chimica Acta, 649(2), 158–179.

    Article  Google Scholar 

  59. Sisa, M., Bonnet, S. L., Ferreira, D., & Van der Westhuizen, J. H. (2010). Photochemistry of flavonoids. Molecules, 15, 5196–5245.

    CAS  Article  Google Scholar 

  60. Takahashi, A., Takeda, K., & Ohnishi, T. (1991). Light-induced anthocyanin reduces the extent of damage to DNA in UV-irradiated Centaurea cyanus cells in culture. Plant and Cell Physiology, 32(4), 541–547.

    CAS  Google Scholar 

  61. Tamtam, F., Mercier, F., Le Bot, B., Eurin, J., Dinh, Q. T., Clément, M., et al. (2008). Occurrence and fate of antibiotics in the Seine Riverin various hydrological conditions. Science of the Total Environment, 393(1), 84–95.

    CAS  Article  Google Scholar 

  62. Umbuzeiro, G. A., Freeman, H. S., Warren, S. H., Oliveira, D. P., Terao, Y., Watanabe, T., et al. (2005). The contribution of azo dyes to the mutagenic activity of the Cristais River. Chemosphere, 60(1), 55–64.

    CAS  Article  Google Scholar 

  63. Wojnárovits, L., & Takács, E. (2008). Irradiation treatment of azo dye containing wastewater: an overview. Radiation Physics and Chemistry, 77(3), 225–244.

    Article  Google Scholar 

  64. Xie, X., Zhou, Q., Lin, D., Guo, J., & Bao, Y. (2011). Toxic effect of tetracycline exposure on growth, antioxidative and genetic indices of wheat (Triticum aestivum L.). Environmental Science and Pollution Research, 18(4), 566–575.

    CAS  Article  Google Scholar 

  65. Yaronskaya, E. B., Gritskevich, E. R., Trukhanovets, N. L., & Averina, N. G. (2007). Effect of kinetin on early stages of chlorophyll biosynthesis in streptomycin-treated barley seedlings. Russian Journal of Plant Physiology, 54(3), 388–395.

    CAS  Article  Google Scholar 

  66. Zadoks, J. C., Chang, T. T., & Konzak, D. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421.

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this study has been provided by the Estonian Ministry of Science and Education (institutional grant IUT-8-3), the European Commission through the European Regional Development Fund (Centre of Excellence EcolChange), the European Research Council (advanced grant 322603, SIP-VOL+), and the European Commission and the Romanian Government (project POSCCE 621/2014).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lucian Copolovici.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Copaciu, F., Opriş, O., Niinemets, Ü. et al. Toxic Influence of Key Organic Soil Pollutants on the Total Flavonoid Content in Wheat Leaves. Water Air Soil Pollut 227, 196 (2016). https://doi.org/10.1007/s11270-016-2888-x

Download citation

Keywords

  • Antibiotics residues
  • Textile dyes
  • Abiotic stress
  • Environmental pollutants
  • Flavonoids
  • Triticum aestivum