Exploring Arsenic Adsorption at low Concentration onto Modified Leonardite

  • Montserrat Solé-SardansEmail author
  • Xavier Gamisans
  • Antonio David Dorado
  • Conxita Lao-Luque


The removal of As(V) from aqueous solutions by leonardite loaded with ferric ions (Fe-leonardite) has been investigated. The influence of pH, contact time, and arsenate concentration on the adsorption process were evaluated. Batch kinetic studies showed that equilibrium time was reached at 24 h of contact time. Equilibrium data obtained with low initial arsenate concentrations (10–400 ppb) were fitted to both Langmuir and Freundlich models, and the maximum adsorption capacity was estimated to be 322 μg g−1. Arsenic sorption was evaluated in continuous mode to reproduce industrial applications and to determine the conditions where the process was controlled by either mass transfer or reaction rate. A maximum sorption capacity of 905 μg g−1 was obtained in continuous experiments. These results indicate that Fe-leonardite is a great potential material for removing arsenate at low initial concentrations from contaminated water.


Arsenic Sorption Leonardite Iron-coated sorbent Column test 



We thank undergraduated students Zoe Alique and Nuria Torras for their collaboration.


  1. Bhattacharya, P., Welch, A. H., Stollenwerk, K. G., McLaughlin, M. J., Bundschuh, J., & Panaullah, G. (2007). Arsenic in the environment: biology and chemistry. The Science of the Total Environment, 379(2–3), 109–120. doi: 10.1016/j.scitotenv.2007.02.037.CrossRefGoogle Scholar
  2. Bohart, G. S., & Adams, E. Q. (1920). Some aspects of the behavior of charcoal with respect to chlorine. Journal of the Chemical Society, 42, 523–544.CrossRefGoogle Scholar
  3. Chuang, C. L., Fan, M., Xu, M., Brown, R. C., Sung, S., Saha, B., & Huang, C. P. (2005). Adsorption of arsenic(V) by activated carbon prepared from oat hulls. Chemosphere, 61(4), 478–483. doi: 10.1016/j.chemosphere.2005.03.012.CrossRefGoogle Scholar
  4. Dong, L., Zinin, P. V., Cowen, J. P., & Ming, L. C. (2009). Iron coated pottery granules for arsenic removal from drinking water. Journal of Hazardous Materials, 168(2–3), 626–632. doi: 10.1016/j.jhazmat.2009.02.168.CrossRefGoogle Scholar
  5. Dupont, L., Jolly, G., & Aplincourt, M. (2007). Arsenic adsorption on lignocellulosic substrate loaded with ferric ion. Environmental Chemistry Letters, 5(3), 125–129. doi: 10.1007/s10311-007-0092-3.CrossRefGoogle Scholar
  6. Gang, D. D., Deng, B., & Lin, L. (2010). As(III) removal using an iron-impregnated chitosan sorbent. Journal of Hazardous Materials, 182(1–3), 156–161. doi: 10.1016/j.jhazmat.2010.06.008.CrossRefGoogle Scholar
  7. Ghimire, K. N., Inoue, K., Yamaguchi, H., Makin, K., & Miyajima, T. (2003). Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste. Water Research, 37, 4945–4953.CrossRefGoogle Scholar
  8. Gu, Z., Fang, J., & Deng, B. (2005). Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal. Environmental Science and Technology, 39, 3833–3843. doi: 10.1021/es048179r.CrossRefGoogle Scholar
  9. Guo, H., Stüben, D., & Berner, Z. (2007). Adsorption of arsenic(III) and arsenic(V) from groundwater using natural siderite as the adsorbent. Journal of Colloid and Interface Science, 315(1), 47–53. doi: 10.1016/j.jcis.2007.06.035.CrossRefGoogle Scholar
  10. IARC. (2004). Some drinking-water disinfectants and contaminants, including arsenic. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 84, 1–477.Google Scholar
  11. Kim, J., Mann, J. D., & Spencer, J. G. (2006). Arsenic removal from water using lignocellulose adsorption medium (LAM). Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 41, 1529–1542. doi: 10.1080/10934520600754284.CrossRefGoogle Scholar
  12. Lao, C., Zeledón, Z., Gamisans, X., & Solé, M. (2005). Sorption of Cd(II) and Pb(II) from aqueous solutions by a low-rank coal (leonardite). Separation and Purification Technology, 45(2), 79–85. doi: 10.1016/j.seppur.2005.02.006.CrossRefGoogle Scholar
  13. Livens, F. R. (1991). Chemical reactions of metals with humic material. Environmental Pollution, 70, 183–208. doi: 10.1016/0269-7491(91)90009-L.CrossRefGoogle Scholar
  14. Mikutta, C., & Kretzschmar, R. (2011). Spectroscopic evidence for ternary complex formation between arsenate and ferric iron complexes of humic substances. Environmental Science & Technology, 45(22), 9550–9557. doi: 10.1021/es202300w.CrossRefGoogle Scholar
  15. Mohan, D., & Pittman, C. U. (2007). Arsenic removal from water/wastewater using adsorbents—a critical review. Journal of Hazardous Materials. doi: 10.1016/j.jhazmat.2007.01.006.Google Scholar
  16. Muñoz, J. A., Gonzalo, A., & Valiente, M. (2002). Arsenic adsorption by Fe(III)-loaded open-celled cellulose sponge. Thermodynamic and selectivity aspects. Environmental Science & Technology, 36(15), 3405–3411. Scholar
  17. Official Journal of the European Union (1998). Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption.Google Scholar
  18. Payne, K., & Abdel-Fattah, T. (2005). Adsorption of arsenate and arsenite by iron-treated activated carbon and zeolites: effects of pH, temperature, and ionic strength. Journal of Environmental Science and Health, Part A, 40(4), 723–749. doi: 10.1081/ESE-200048254.CrossRefGoogle Scholar
  19. Rahaman, M. S., Basu, A., & Islam, M. R. (2008). The removal of As(III) and As(V) from aqueous solutions by waste materials. Bioresource Technology, 99, 2815–2823.CrossRefGoogle Scholar
  20. Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568. doi: 10.1016/S0883-2927(02)00018-5.CrossRefGoogle Scholar
  21. Solé, M., Casas, J. M., & Lao, C. (2003). Removal of Zn from aqueous solutions by low-rank coal. Water, Air, and Soil Pollution, 144, 57–65. doi: 10.1023/A:1022965417124.CrossRefGoogle Scholar
  22. Thirunavukkarasu, O. S., Viraraghavan, T., & Subramanian, K. S. (2003). Arsenic removal from drinking water using iron oxide-coated sand. Water, Air, and Soil Pollution, 142, 95–111.CrossRefGoogle Scholar
  23. USEPA (2002). Arsenic treatment technologies for soil, waste, and water. Office of Solid Waste and Emergency Response, EPA 542-R-(02-004).Google Scholar
  24. Vaughan, R. L., & Reed, B. E. (2005). Modeling As(V) removal by a iron oxide impregnated activated carbon using the surface complexation approach. Water Research, 39(6), 1005–1014. doi: 10.1016/j.watres.2004.12.034.CrossRefGoogle Scholar
  25. Wolborska, A. (1989). Adsorption on activated carbon of p-nitrophenol from aqueous solution. Water Research, 23, 85–91. Scholar
  26. Yadanaparthi, S. K. R., Graybill, D., & von Wandruszka, R. (2009). Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters. Journal of Hazardous Materials, 171(1–3), 1–15. doi: 10.1016/j.jhazmat.2009.05.103.CrossRefGoogle Scholar
  27. Zeledón-Toruño, Z., Lao-Luque, C., & Solé-Sardans, M. (2005). Nickel and copper removal from aqueous solution by an immature coal (leonardite): effect of pH, contact time and water hardness. Journal of Chemical Technology & Biotechnology, 80, 649–656. doi: 10.1002/jctb.1243.CrossRefGoogle Scholar
  28. Zeledón-Toruño, Z. C., Lao-Luque, C., de Las Heras, F. X. C., & Sole-Sardans, M. (2007). Removal of PAHs from water using an immature coal (leonardite). Chemosphere, 67(3), 505–512. doi: 10.1016/j.chemosphere.2006.09.047.CrossRefGoogle Scholar
  29. Zhang, F. S., & Itoh, H. (2005). Iron oxide-loaded slag for arsenic removal from aqueous system. Chemosphere, 60(3), 319–325. doi: 10.1016/j.chemosphere.2004.12.019.CrossRefGoogle Scholar
  30. Zhang, W., Singh, P., Paling, E., & Delides, S. (2004). Arsenic removal from contaminated water by natural iron ores. Minerals Engineering, 17(4), 517–524. doi: 10.1016/j.mineng.2003.11.020.CrossRefGoogle Scholar
  31. Zouboulis, A. I., & Katsoyiannis, I. A. (2002). Arsenic removal using iron oxide loaded alginate beads. Industrial & Engineering Chemistry Research, 41(24), 6149–6155. doi: 10.1021/ie0203835.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Montserrat Solé-Sardans
    • 1
    Email author
  • Xavier Gamisans
    • 1
  • Antonio David Dorado
    • 1
  • Conxita Lao-Luque
    • 1
  1. 1.Department of Mining Engineering and Natural ResourcesUniversitat Politècnica de Catalunya (UPC)ManresaSpain

Personalised recommendations