Skip to main content
Log in

Investigation of Zn2+ and Cd2+ Adsorption Performance by Different Weathering Basalts

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Geological barriers play an important role in preventing pollution of groundwater. Basalts are common geological media; however, there have not been any studies that report the effect of basalt type on the metal ion adsorption performance. In this study, we explored the metal ion (Zn2+ and Cd2+) adsorption ability of two kinds of weathering basalts, the origin weathering basalt (WB) and the eluvial deposit (ED), both of which were derived from same basaltic formation. Characteristics of the sediments were examined by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Barrett-Joyner-Halenda (BJH) measurement, and the rapid potentiometric titration (RPT) method. Batch experiments were performed to evaluate the Zn2+ and Cd2+ adsorption performance of WB and ED and how adsorption was affected by contact time, initial metal ion concentration, pH, and ionic strength. Despite WB and ED having similar chemical compositions, WB exhibited better adsorption than ED likely due to the fact that WB was rougher and had more small-sized spherical structures and stronger electrostatic forces. The adsorption process fits the Freundlich isotherm model well. The adsorption efficiency decreased with a decrease of pH (from 4 to 2) and with increasing ionic strength. These results suggest that a geological barrier composed of WB media might be able to effectively sequester metallic contaminants to prevent them from reaching groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agca, N. (2015). Spatial distribution of heavy metal content in soils around an industrial area in Southern Turkey. Arabian Journal of Geosciences, 8, 1111–1123.

    Article  CAS  Google Scholar 

  • Antonova, I. A., Gryaznov, O. N., Guman, O. M., Makarov, A. B., & Kolosnitsina, O. V. (2014). Geological conditions for allocation of solid municipal and industrial waste disposal sites in the middle Urals. Water Resources, 41, 896–903.

    Article  CAS  Google Scholar 

  • Bhattacharyya, K. G., & Sen Gupta, S. (2008). Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Advances in Colloid and Interface Science, 140, 114–131.

    Article  CAS  Google Scholar 

  • Boudesocque, S., Guillon, E., Aplincourt, M., Marceau, E., & Stievano, L. (2007). Sorption of Cu(II) onto vineyard soils: macroscopic and spectroscopic investigations. Journal of Colloid and Interface Science, 307, 40–49.

    Article  CAS  Google Scholar 

  • Bradl, H. B. (2004). Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277, 1–18.

    Article  CAS  Google Scholar 

  • Cances, B., Ponthieu, M., Castrec-Rouelle, M., Aubry, E., & Benedetti, M. F. (2003). Metal ions speciation in a soil and its solution: experimental data and model results. Geoderma, 113, 341–355.

    Article  CAS  Google Scholar 

  • Caner, L., Radtke, L. M., Vignol-Lelarge, M. L., Inda, A. V., Bortoluzzi, E. C., & Mexias, A. S. (2014). Basalt and rhyo-dacite weathering and soil clay formation under subtropical climate in southern Brazil. Geoderma, 235, 100–112.

    Article  Google Scholar 

  • Covelo, E. F., Andrade, M. L., & Vega, F. A. (2004). Heavy metal adsorption by humic umbrisols: selectivity sequences and competitive sorption kinetics. Journal of Colloid and Interface Science, 280, 1–8.

    Article  CAS  Google Scholar 

  • Covelo, E. F., Vega, F. A., & Andrade, M. L. (2007a). Simultaneous sorption and desorption of Cd, Cr, Cu, Ni, Pb, and Zn in acid soils - II. Soil ranking and influence of soil characteristics. Journal of Hazardous Materials, 147, 862–870.

    Article  CAS  Google Scholar 

  • Covelo, E. F., Vega, F. A., & Andrade, M. L. (2007b). Simultaneous sorption and desorption of Cd, Cr, Cu, Ni, Pb, and Zn in acid soils I. selectivity sequences. Journal of Hazardous Materials, 147, 852–861.

    Article  CAS  Google Scholar 

  • Dali-youcef, N., Ouddane, B., & Derriche, Z. (2006). Adsorption of zinc on natural sediment of Tafna River (Algeria). Journal of Hazardous Materials, A137, 1263–1270.

    Article  Google Scholar 

  • de Souza Braz, A. M., Fernandes, A. R., Ferreira, J. R., & Alleoni, L. R. F. (2013). Distribution coefficients of potentially toxic elements in soils from the eastern Amazon. Environmental Science and Pollution Research, 20, 7231–7242.

    Article  Google Scholar 

  • Deliyanni, E. A., Peleka, E. N., & Matis, K. A. (2007). Removal of zinc ion from water by sorption onto iron-based nanoadsorbent. Journal of Hazardous Materials, 141, 176–184.

    Article  CAS  Google Scholar 

  • Do, N. Y., & Lee, S. R. (2006). Temperature effect on migration of Zn and Cd through natural clay. Environmental Monitoring And Assessment, 118, 267–291.

    Article  CAS  Google Scholar 

  • Eloussaief, M., Sdiri, A., & Benzina, M. (2013). Modelling the adsorption of mercury onto natural and aluminium pillared clays. Environmental Science and Pollution Research, 20, 469–479.

    Article  CAS  Google Scholar 

  • Elzahabi, M., & Yong, R. N. (2001). pH influence on sorption characteristics of heavy metal in the vadose zone. Engineering Geology, 60, 61–68.

    Article  Google Scholar 

  • Ettler, V., Matura, M., Mihaljevič, M., & Bezdička, P. (2006). Metal speciation and attenuation in stream waters and sediments contaminated by landfill leachate. Environmental Geology, 49, 610–619.

    Article  CAS  Google Scholar 

  • Farrah, H., & Pickering, W. F. (1977). Influence of clay-solute interactions on aqueous heavy metal ion levels. Water, Air, and Soil Pollution, 8, 189–197.

    Article  CAS  Google Scholar 

  • Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156, 2–10.

    Article  CAS  Google Scholar 

  • Garcia, G., Zanuzzi, A. L., & Faz, A. (2005). Evaluation of heavy metal availability prior to an in situ soil phytoremediation program. Biodegradation, 16, 187–194.

    Article  CAS  Google Scholar 

  • Garcia-Sanchez, A., Alastuey, A., & Querol, X. (1999). Heavy metal adsorption by different minerals: application to the remediation of polluted soils. Science of the Total Environment, 242, 179–188.

    Article  CAS  Google Scholar 

  • Gilbert, B., Ono, R. K., Ching, K. A., & Kim, C. S. (2009). The effects of nanoparticle aggregation processes on aggregate structure and metal uptake. Journal of Colloid and Interface Science, 339(2), 285–295.

    Article  CAS  Google Scholar 

  • Guerra, D. L., Batista, A. C., da Costa, P. C., Viana, R. R., & Airoldi, C. J. (2010). Adsorption of arsenic ions on Brazilian sepiolite: effect of contact time, pH, concentration, and calorimetric investigation. Journal of Colloid and Interface Science, 346(1), 178–87.

    Article  CAS  Google Scholar 

  • He, J., Xue, H. X., Lue, C. W., Fan, Q. Y., Liang, Y., Sun, Y., Shen, L. L., & Bai, S. (2009). The impacts of common ions on the adsorption of heavy metal. Environmental Geology, 58, 1499–1508.

    Article  CAS  Google Scholar 

  • Hong, Y., & Reible, D. D. (2014). Modeling the effect of pH and salinity on biogeochemical reactions and metal behavior in sediment. Water, Air, and Soil Pollution, 225, 1800.

    Article  Google Scholar 

  • Hoodaji, M., Tahmourespour, A., & Amini, H. (2010). Assessment of copper, cobalt and zinc contaminations in soils and plants of industrial area in Esfahan city (in Iran). Environmental Earth Sciences, 61, 1353–1360.

    Article  CAS  Google Scholar 

  • Jain, C. K., Singhal, D. C., & Sharma, M. K. (2004). Adsorption of zinc on bed sediment of River Hindon: adsorption models and kinetics. Journal of Hazardous Materials, B114, 231–239.

    Article  Google Scholar 

  • Jarup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68, 167–182.

    Article  Google Scholar 

  • Jiang, M. Q., Jin, X. Y., Lu, X. Q., & Chen, Z. L. (2010). Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination, 252, 33–39.

    Article  CAS  Google Scholar 

  • Kónya, J., Nagy, N. M., & Nemes, Z. (2005). The effect of mineral composition on the sorption of cesium ions on geological formations. Journal of Colloid and Interface Science, 290, 350–356.

    Article  Google Scholar 

  • Kparmwang, T. (2003). Zinc adsorption and desorption at low concentrations by basaltic soil on Jos Plateau, Nigeria. Communications in Soil Science and Plant Analysis, 34, 1589–1609.

    Article  CAS  Google Scholar 

  • Kwon, J. S., Yun, S. T., Kim, S. O., Mayer, B., & Hutcheon, I. (2005). Sorption of Zn(II) in aqueous solutions by scoria. Chemosphere, 60, 1416–1426.

    Article  CAS  Google Scholar 

  • Kwon, J. S., Yun, S. T., Lee, J. H., Kim, S. O., & Jo, H. Y. (2010). Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: kinetics and equilibria of sorption. Journal of Hazardous Materials, 174, 307–313.

    Article  CAS  Google Scholar 

  • Lafuente, A. L., Gonzalez, C., Quintana, J. R., Vazquez, A., & Romero, A. (2008). Mobility of heavy metals in poorly developed carbonate soils in the Mediterranean region. Geoderma, 145, 238–244.

    Article  CAS  Google Scholar 

  • Latrille, C., Denaix, L., & Lamy, I. (2003). Interaction of copper and zinc with allophane and organic matter in the B horizon of an Andosol. European Journal of Soil Science, 54, 357–364.

    Article  CAS  Google Scholar 

  • Malandrino, M., Abollino, O., Giacomino, A., Aceto, M., & Mentasti, E. (2006). Adsorption of heavy metals on vermiculite: influence of pH and organic ligands. Journal of Colloid and Interface Science, 299, 537–546.

    Article  CAS  Google Scholar 

  • Marosits, E., Polyak, K., & Hlavay, J. (2000). Investigation on the chemical bonding of copper ions on different soil samples. Microchemical Journal, 67, 219–226.

    Article  CAS  Google Scholar 

  • Nezhad, M. T. K., Mohammadi, K., Gholami, A., Hani, A., & Shariati, M. S. (2014). Cadmium and mercury in topsoils of Babagorogor watershed, western Iran: distribution, relationship with soil characteristics and multivariate analysis of contamination sources. Geoderma, 219, 177–185.

    Article  Google Scholar 

  • Odhiambo (2014). Gerneration, infilration and percolation of leachates and its contamination with underground water in Nairobi Kenya. Dissertation.

  • Proust, D., Fontaine, C., & Dauger, N. (2013). Impacts of weathering and clay mineralogy on heavy metals sorption in sludge-amended soils. Catena, 101, 188–196.

    Article  CAS  Google Scholar 

  • Schaefer, C. E. G. R., Fabris, J. D., & Ker, J. C. (2008). Minerals in the clay fraction of Brazilian Latosols (Oxisols): a review. Clay Minerals, 43, 137–154.

    Article  CAS  Google Scholar 

  • Sdiri, A. T., Higashi, T., & Jamoussi, F. (2014). Adsorption of copper and zinc onto natural clay in single and binary systems. International Journal of Environmental Science and Technology, 11, 1081–1092.

    Article  CAS  Google Scholar 

  • Seliman, A. F., & Borai, E. H. (2011). Utilization of natural chabazite and mordenite as a reactive barrier for immobilization of hazardous heavy metals. Environmental Science And Pollution Research International, 18, 1098–1107.

    Article  CAS  Google Scholar 

  • Sen Gupta, S., & Bhattacharyya, K. G. (2006). Removal of Cd(II) from aqueous solution by kaolinite, montmorillonite and their poly(oxo zirconium) and tetrabutylammonium derivatives. Journal of Hazardous Materials, 128, 247–257.

    Article  CAS  Google Scholar 

  • Sen Gupta, S., & Bhattacharyya, K. G. (2011). Kinetics of adsorption of metal ions on inorganic materials: a review. Advances in Colloid and Interface Science, 162, 39–58.

    Article  CAS  Google Scholar 

  • Shipley, H. J., Engates, K. E., & Grover, V. A. (2013). Removal of Pb(II), Cd(II), Cu(II), and Zn(II) by hematite nanoparticles: effect of sorbent concentration, pH, temperature, and exhaustion. Environmental Science And Pollution Research International, 20, 1727–1736.

    Article  CAS  Google Scholar 

  • Soubrand-Colin, M., Neel, H. B., C., Courtin-Nomade, A., & Martin, F. (2005). Weathering of basaltic rocks from the French Massif Central: origin and fate of Ni, Cr, Zn and Cu. Canadian Mineralogist, 3, 1103–1118.

    Google Scholar 

  • Srivastava, P., Singh, B., & Angove, M. (2005). Competitive adsorption behavior of heavy metals on kaolinite. Journal of Colloid and Interface Science, 290, 28–38.

    Article  CAS  Google Scholar 

  • Stipp, S. L. S., Hansen, M., Kristensen, R., Hochella, M. F., Bennedsen, L., Dideriksen, K., Balic-Zunic, T., Leonard, D., & Mathieu, H. J. (2002). Behaviour of Fe-oxides relevant to contaminant uptake in the environment. Chemical Geology, 190, 321–337.

    Article  CAS  Google Scholar 

  • Tan, W. F., Lu, S. J., Liu, F., Feng, X. H., He, J. Z., & Koopall, L. K. (2008). Determination of the point-of-zero, charge of manganese oxides with different methods including an improved salt titration method. Soil Science, 173, 277–286.

    Article  CAS  Google Scholar 

  • Teixeira, R. S., Cambier, P., Dias, R. D., Pinese, J. P. P., & Jaulin-Soubelet, A. (2010). Mobility of potentially harmful metals in latosols impacted by the municipal solid waste deposit of Londrina, Brazil. Applied Geochemistry, 25, 1–15.

    Article  Google Scholar 

  • Usman, A. R. A. (2008). The relative adsorption selectivities of Pb, Cu, Zn, Cd and Ni by soils developed on shale in New Valley, Egypt. Geoderma, 144, 334–343.

    Article  CAS  Google Scholar 

  • Vanaecker, M., Courtin-Nomade, A., Bril, H., Laureyns, J., & Lenain, J.-F. (2014). Behavior of Zn-bearing phases in base metal slag from France and Poland: a mineralogical approach for environmental purposes. Journal of Geochemical Exploration, 136, 1–13.

    Article  CAS  Google Scholar 

  • Vega, F. A., Covelo, E. F., & Andrade, M. L. (2006). Competitive sorption and desorption of heavy metals in mine soils: influence of mine soil characteristics. Journal of Colloid and Interface Science, 298, 582–592.

    Article  CAS  Google Scholar 

  • Wang, Y. J., Zhou, D. M., Sun, R. J., Cang, L., & Hao, X. Z. (2006). Cosorption of zinc and glyphosate on two soils with different characteristics. Journal of Hazardous Materials, A37, 76–82.

    Article  Google Scholar 

  • Yang, J. C., Wang, X. Y., Zhu, M. P., Liu, H. L., & Ma, J. (2014). Investigation of PAA/PVDF–NZVI hybrids for metronidazole removal: synthesis, characterization, and reactivity characteristics. Journal of Hazardous Materials, 264, 269–277.

    Article  CAS  Google Scholar 

  • Yao, Y., Zhu, H., Li, B., Hu, H., Zhang, T., Yamazaki, E., Taniyasu, S., Yamashita, N., & Sun, H. (2014). Distribution and primary source analysis of per- and poly-fluoroalkyl substances with different chain lengths in surface and groundwater in two cities, North China. Ecotoxicology And Environmental Safety, 108, 318–328.

    Article  CAS  Google Scholar 

  • Yong, R. N., Galvezcloutier, R., & Phadungchewit, Y. (1993). Selective sequential extraction analysis of heavy-metal retention in soil. Canadian Geotechnical Journal, 30, 834–847.

    Article  CAS  Google Scholar 

  • Zhao, L., Hou, H., Fujii, A., Hosomi, M., & Li, F. (2014). Degradation of 1,4-dioxane in water with heat- and Fe2+-activated persulfate oxidation. Environmental Science And Pollution Research, 21, 7457–7465.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Fundamental Research Fund for the Central Universities (No.2652014069). We would also like to thank Dr. Lili Hou and Tingwen Wu for their kind help during the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Xue or Honghan Chen.

Additional information

This manuscript has been thoroughly edited by a native English speaker from an editing company. An editing certificate will be provided upon request.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, S., Xue, Q., Niu, Z. et al. Investigation of Zn2+ and Cd2+ Adsorption Performance by Different Weathering Basalts. Water Air Soil Pollut 227, 126 (2016). https://doi.org/10.1007/s11270-016-2800-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2800-8

Keywords

Navigation