Skip to main content

Adsorption of Iron(II) from Acid Mine Drainage Contaminated Groundwater Using Coal Fly Ash, Coal Bottom Ash, and Bentonite Clay

Abstract

Acid mine drainage (AMD) is a persisting environmental problem and a grievous nuisance in the mining sector. In this study, iron (Fe(II)) removal was tested in AMD samples collected from the Enugu Okpara abandoned coal mine (Nigeria), having iron concentrations of ∼1300 mg/l. Digestion, toxicity characteristic leaching procedure (TCLP), and batch adsorption tests using coal bottom ash (BA), bentonite clay (BC), and coal fly ash (FA) were performed. Apart from elucidating the effects of adsorbent dose and initial Fe(II) concentrations on the maximum adsorption capacity (q e ) of the adsorbents, the experimental data were also fitted to well-known adsorption isotherms and kinetic models. The results from batch tests showed that the optimum adsorbent dosages for BA, BC, and FA were found to be 3, 4, and 4 g per 100 ml, respectively. Among the different adsorption isotherm models tested, the Temkin model fitted the experimental data well for Fe(II) removal. Results from kinetic analysis showed that the Fe(II) removal efficiency increased with an increase in the contact time and then remained almost constant after 30 min for the three tested adsorbents.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

α and β :

Elovich constants

B :

Constant relating to heat of sorption (J/mol)

B DR :

Same as k

b T :

Temkin’s isotherm constant

C e :

Equilibrium concentration (mg/l)

C o :

Initial adsorbate concentration (mg/l)

E :

Main adsorption energy (kJ/mol)

ɛ:

Polanyi potential (potential energy)

k :

Constant relating to adsorption energy (mol2k/J2)

k 1 :

Pseudo-first-order adsorption constant

K 2 :

Pseudo-second-order adsorption constant

k f :

Freundlich constant (mg/g)

k L :

Langmuir constant (l/mg)

n :

Adsorption intensity (mg/l)

N :

Number of data points

R :

Conventional gas constant = 8.314 kJ/mol/K

R L :

Separation constant

t :

Time (min)

T :

Temperature in Kelvin (K)

Δq :

Standard deviation

q e :

Mass of material adsorbed per unit mass of adsorbent at equilibrium (mg/g)

q e,calc :

Equilibrium capacity calculated from the model (mg/g)

q e,exp :

Equilibrium capacity (mg/g) from the experimental data

q m :

Maximum adsorption capacity (mg/g)

q t :

Amount of material adsorbed at time t (mg/g)

V :

Volume of solution in the reactor (ml)

χ 2 :

Chi-squared

References

  1. Abasi, C. Y., Abia, A. A., & Igwe, J. C. (2011). Adsorption of iron (III), lead (II) and cadmium (II) ions by unmodified raphia palm (Raphia hookeri) fruit endocarp. Environmental Research Journal, 5(3), 104–113.

    Article  Google Scholar 

  2. Adaikpoh, E. O., Nwajei, G. E., & Ogala, J. E. (2005). Heavy metals concentrations in coal and sediments from River Ekulu in Enugu, Coal City of Nigeria. Journal of Applied Sciences and Environmental Management, 9(3), 5–8.

    Google Scholar 

  3. Ademiluyi, F. T., & Ujile, A. A. (2013). Kinetics of batch adsorption of iron (II) ions from aqueous solution using activated carbon from Nigerian bamboo. International Journal of Engineering and Technology, 3(6), 623–631.

    Google Scholar 

  4. Al-Anber, Z. A., & Al-Anber, M. A. S. (2008). Thermodynamics and kinetic studies of iron (III) adsorption by olive cake in a batch system. Journal of the Mexican Chemical Society, 52(2), 108–115.

    CAS  Google Scholar 

  5. Al-Shahrani, S. S. (2013). Treatment of wastewater contaminated with Fe (III) by adsorption onto saudi activated bentonite. International Journal of Engineering & Technology IJET-IJENS, 13(6), 58–68.

    Google Scholar 

  6. APHA, AWWA & WEF. (2005). Standard methods for the examination of water and wastewater. 21st edition. Washington, DC.

  7. Arivoli, S., Marimuthu, V., & Judith, T. R. (2014). Equilibrium and thermodynamics studies on the removal of iron (III) onto activated pistia stratiotes leaves nano carbon. Research and Reviews: Journal of Chemistry, 3(1), 15–22.

    Google Scholar 

  8. Asokbunyarat, V., & Annachhatre, A. P. (2015). Permeable reactive barrier for arsenic removal from arsenic groundwater. International Journal of Management and Applied Science, 1, 24–29.

    Google Scholar 

  9. Asokbunyarat, V., van Hullebusch, E. D., Lens, P. N. L., & Annachhatre, A. P. (2015). Coal bottom ash as sorbing material for Fe(II), Cu(II), Mn(II), and Zn(II) removal from aqueous solutions. Water, Air, & Soil Pollution, 226(5), 1–17.

    CAS  Article  Google Scholar 

  10. Benhammou, A., Yaacoubi, A., Nibou, L., & Tanouti, B. (2005). Adsorption of metal ions onto Moroccan stevensite: kinetic and isotherm studies. Journal of Colloid and Interface Science, 282(2), 320–326.

    CAS  Article  Google Scholar 

  11. Boudrahem, F., Aissani-Benissad, F., & Aït-Amar, H. (2009). Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride. Journal of Environmental Management, 90(10), 3031–3039.

    CAS  Article  Google Scholar 

  12. Dean, J. A. (1999). Lange’s handbook of chemistry (15th ed.). New York: McGraw-Hill.

    Google Scholar 

  13. Dhabab, J. M. (2012). Removal of Fe(II), Cu(II), Zn(II), and Pb(II) ions from aqueous solutions by duckweed. Journal of Oceanography and Marine Science, 2(1), 17–22.

    Google Scholar 

  14. Exploring the environment, (2004). ETE, Exploring the environment; water quality; acid mine drainage. Center for Educational Technologies. Wheeling Jesuit University/NASA-supported Classroom of the Future, U.S.A.

  15. Ezeigbo, H. I., & Ezeanyim, B. N. (1993). Environmental pollution from coal mining activities in the Enugu area Anambka State Nigeria. Mine Water and the Environment, 12, 53–62.

    Google Scholar 

  16. Gorme, J. B., Maniquiz-Redillas, M. C., & Kim, L. H. (2015). Development of a stormwater treatment system using bottom ash as filter media. Desalination and Water Treatment, 53(11), 3118–3125.

    CAS  Article  Google Scholar 

  17. Ho, Y. S. (2004). Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics, 59(1), 171–177.

    CAS  Article  Google Scholar 

  18. Horsfall, M., Spiff, A. I., & Abia, A. A. (2004). Studies on the influence of mercaptoacetic acid (MAA) modification of cassava (Manihot sculenta cranz) waste biomass on the adsorption of Cu2+ and Cd2+ from aqueous solution. Bulletin of the Korean Chemical Society, 25(7), 969–976.

    CAS  Article  Google Scholar 

  19. Jiang, J. G., Xu, X., Wang, J., Yang, S. J., & Zhang, Y. (2007). Investigation of basic properties of fly ash from urban waste incinerators in China. Journal of Environmental Sciences, 19(4), 458–463.

    CAS  Article  Google Scholar 

  20. Johnson, D. B., & Hallberg, K. B. (2005). Acid mine remediation options: a review. Science of the Total Environment, 338, 3–14.

    CAS  Article  Google Scholar 

  21. Kadirvelu, K., Goel, J., & Rajagopal, C. (2008). Sorption of lead, mercury and cadmium ions in multi-component system using carbon aerogel as adsorbent. Journal of Hazardous Materials, 153(1-2), 502–507.

    CAS  Article  Google Scholar 

  22. Kavand, M., Kaghazchi, T., & Soleimani, M. (2014). Optimization of parameters for competitive adsorption of heavy metal ions (Pb2+, Ni2+, Cd2+) onto activated carbon. Korean Journal of Chemical Engineering, 31(4), 692–700.

    CAS  Article  Google Scholar 

  23. Levandowski, J., & Kalkreuth, W. (2009). Chemical and petrographical characterization of feed coal, fly ash and bottom ash from the Figueira Power Plant, Paraná, Brazil. International Journal of Coal Geology, 77(3), 269–281.

    CAS  Article  Google Scholar 

  24. Mittal, J., Jhare, D., Vardhan, H., & Mittal, A. (2014). Utilization of bottom ash as a low-cost sorbent for the removal and recovery of a toxic halogen containing dye eosin yellow. Desalination and Water Treatment, 52(22), 4508–4519.

    CAS  Article  Google Scholar 

  25. Mohan, S., & Gandhimathi, R. (2009). Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent. Journal of Hazardous Materials, 169(2), 351–359.

    CAS  Article  Google Scholar 

  26. Moreno, J. C., Gómez, R., & Giraldo, L. (2010). Removal of Mn, Fe, Ni and Cu ions from wastewater using cow bone charcoal. Materials, 3, 452–466.

    CAS  Article  Google Scholar 

  27. Naseem, R., & Tahir, S. S. (2001). Removal of Pb (II) from aqueous/acidic solutions by using bentonite as an adsorbent. Water Research, 35(16), 3982–3986.

    CAS  Article  Google Scholar 

  28. Nganje, T. N., Adamu, C. I., Ugbaja, A. N., Ebieme, E., & Sikakwe, G. U. (2011). Environmental contamination of trace elements in the vicinity of Okpara coal mine, Enugu, Southeastern Nigeria. Arabian Journal of Geosciences, 4(1), 199–205.

    CAS  Article  Google Scholar 

  29. Nidheesh, P. V., Gandhimathi, R., Ramesh, S. T., & Singh, T. S. A. (2012). Adsorption and desorption characteristics of crystal violet in bottom ash column. Journal of Urban and Environmental Engineering, 6(1), 18–29.

    Article  Google Scholar 

  30. Patrick, U. A., Chinedu, U. C., & Darlington, A. (2014). Analysis of thermodynamics, kinetics and equilibrium isotherm on Fe3+/Fe2+ adsorption onto palm kernel shell activated carbon (PKSAC): a low-cost adsorbent. American Chemical Science Journal, 4(3), 298–325.

    Article  Google Scholar 

  31. Polowczyk, I., Ulatowska, J., Koźlecki, T., Bastrzyk, A., & Sawiński, W. (2013). Studies on removal of boron from aqueous solution by fly ash agglomerates. Desalination, 310, 93–101.

    CAS  Article  Google Scholar 

  32. Rahman, M. M., Adil, M., Yusof, A. M., Karuzzaman, Y. B., & Ansary, R. H. (2014). Removal of heavy metal ions with acid activated carbons derived from oil palm and coconut shells. Materials, 7, 3634–3650.

    CAS  Article  Google Scholar 

  33. Ravichandran, T., & Arivoli, S. (2013). Adsorption of Fe (III) ions by activated calcite powder-equilibrium, kinetic and thermodynamics studies. Journal of Biomedical and Pharmaceutical Research, 2(1), 52–59.

    CAS  Google Scholar 

  34. Skousen, J., Rose, A., Geidel, G., Foreman, J., Evans, R., Hellier, W., & Members of the Avoidance and Remediation Working Group of the Acid Drainage Technology Initiative (ADTI). (1998). Handbook of technologies for avoidance and remediation of acid mine drainage (p. 131). Morgantown: West Virginia Water Research Institute, West Virginia University.

    Google Scholar 

  35. Srivastava, V. C., Mall, I. D., & Mishra, I. M. (2007). Multicomponent adsorption study of metal ions onto bagasse fly ash using Taguchi’s design of experimental methodology. Industrial & Engineering Chemistry Research, 46(17), 5697–5706.

    CAS  Article  Google Scholar 

  36. Stanković, N., Logar, M., Luković, J., Pantić, J., Miljević, M., Babić, B., & Mihajlović, A. R. (2011). Characterization of bentonite clay from ‘Greda’ deposit. Processing and Application of Ceramics, 5(2), 97–101.

    Article  Google Scholar 

  37. Tan, I. A. W., Hameed, B. H., & Ahmad, A. L. (2007). Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon. Chemical Engineering Journal, 127(1), 111–119.

    CAS  Article  Google Scholar 

  38. Veli, S., & Alyüz, B. (2007). Adsorption of copper and zinc from aqueous solutions by using natural clay. Journal of Hazardous Materials, 149(1), 226–233.

    CAS  Article  Google Scholar 

  39. Velzy, C. O., Grillo, L. M. (2007). Waste-to-energy combustion in handbook of energy efficiency and renewable energy, In F. Kreith, D. Y. Goswami (Eds.), (pp. 24-31). Boca Raton, FL: CRC Press, Taylor & Francis Group.

  40. Xie, J., Wang, Z., Wu, D., & Kong, H. (2014). Synthesis and properties of zeolite/hydrated iron oxide composite from coal fly ash as efficient adsorbent to simultaneously retain cationic and anionic pollutants from water. Fuel, 116, 71–76.

    CAS  Article  Google Scholar 

  41. Yeboah, N. N. N., Shearer, C. R., Burns, S. E., & Kurtis, K. E. (2014). Characterization of biomass and high carbon content coal ash for productive reuse applications. Fuel, 116, 438–447.

    CAS  Article  Google Scholar 

  42. Yin, N.-H., Sivry, Y., Benedetti, M. F., Lens, P. N. L., & van Hullebusch, E. D. (2016). Application of Zn isotopes in environmental impact assessment of Zn-Pb metallurgical industries: A mini review. Applied Geochemistry, 64, 128–135.

    CAS  Article  Google Scholar 

  43. Yürüm, A., Ataklı, Z. Ö. K., Sezen, M., Semiat, R., & Yürüm, Y. (2014). Fast deposition of porous iron oxide on activated carbon by microwave heating and arsenic (V) removal from water. Chemical Engineering Journal, 242, 321–332.

    Article  Google Scholar 

  44. Zhang, M. (2011). Adsorption study of Pb(II), Cu(II) and Zn(II) from simulated acid mine drainage using dairy manure compost. Chemical Engineering Journal, 172, 361–368.

    CAS  Article  Google Scholar 

  45. Zhao, G., Zhang, H., Fan, Q., Ren, X., Li, J., Chen, Y., & Wang, X. (2010). Sorption of copper (II) onto super-adsorbent of bentonite-polyacrylamide composites. Journal of Hazardous Materials, 173(1), 661–668.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank DGIS-UNESCO-IHE Programmatic Cooperation (DUPC), Netherlands, for funding the project “Evaluation of two technologies for heavy metal removal” (Project No. D0049, EVOTEC) and the Netherlands Fellowship Programme (NFP) for providing an MSc scholarship for the joint AIT and UNESCO-IHE Master in Environmental Technologies for Sustainable Development. The authors are grateful to the School of Environment, Resources and Development (AIT, Bangkok) for providing analytical and infrastructural support to carry out this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ajit Annachhatre.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Orakwue, E.O., Asokbunyarat, V., Rene, E.R. et al. Adsorption of Iron(II) from Acid Mine Drainage Contaminated Groundwater Using Coal Fly Ash, Coal Bottom Ash, and Bentonite Clay. Water Air Soil Pollut 227, 74 (2016). https://doi.org/10.1007/s11270-016-2772-8

Download citation

Keywords

  • Acid mine drainage
  • Bottom ash
  • Bentonite clay
  • Fly ash
  • Iron removal
  • Adsorption isotherm
  • Adsorption kinetics