Calibration and Validation of a Two-Step Kinetic Mathematical Model for Predicting Cu Extraction Efficiency in an EDDS-Enhanced Soil Washing

  • Alberto Ferraro
  • Massimiliano Fabbricino
  • Eric D. van Hullebusch
  • Giovanni Esposito


The kinetic trend for Cu extraction from contaminated soil through ethylenediamine-N,N′-disuccinic acid (EDDS)-enhanced soil washing is investigated. Long-term tests are conducted over 96 h at five different values of EDDS-Cu (M) molar ratio (mol/mol) and five different values of liquid-to-soil (L/S) ratio (v/w). The overall Cu extraction efficiency at different M ratios ranges from ≃47 to ≃60 % as the ratio increases from stoichiometric values to EDDS excess (M = 50). An increase in the L/S ratio generally leads to the Cu extraction efficiency decrease, from ≃60 % (L/S = 5) to ≃49 % (L/S = 45). The highest decrease of Cu extraction yield is observed while increasing the L/S ratio from 5 to 15, with negligible differences occurring as the L/S ratio increases further. The collected data show a two-step kinetic tendency during the extraction process, first characterized by a fast extraction kinetic which is followed by a slow extraction step. Two sets of experimental data are used for calibration and validation of a two-step mathematical model used to simulate Cu mobilization efficiency as a function of treatment time and M ratio. The proposed model is a useful tool for Cu extraction efficiency prediction and can be applied to improve the decision-making process regarding the EDDS-enhanced soil washing approach.


EDDS-enhanced soil washing Extraction efficiency prediction Cu contamination Two-step kinetic model Model validity assessment 


  1. Abumaizar, R. J., & Smith, E. H. (1999). Heavy metal contaminants removal by soil washing. J Hazard Mater, 70(1), 71–86. doi:10.1016/S0304-3894(99)00149-1.CrossRefGoogle Scholar
  2. Begum, Z. A., Rahman, I. M. M., Tate, Y., Sawai, H., Maki, T., & Hasegawa, H. (2012). Remediation of toxic metal contaminated soil by washing with biodegradable aminopolycarboxylate chelants. Chemosphere, 87(10), 1161–70. doi:10.1016/j.chemosphere.2012.02.032.CrossRefGoogle Scholar
  3. Elliott, H. A., Linn, J. H., & Shields, G. A. (1989). Role of Fe in extractive decontamination of Pb-polluted soils. Hazard Waste Hazard Mater, 6(3), 223–9. doi:10.1089/hwm.1989.6.223.CrossRefGoogle Scholar
  4. Esposito, G., Frunzo, L., Panico, A., & Pirozzi, F. (2011). Model calibration and validation for OFMSW and sewage sludge co-digestion reactors. Waste Manag, 31, 2527–35. doi:10.1016/j.wasman.2011.07.024.CrossRefGoogle Scholar
  5. Fabbricino, M., Ferraro, A., Del Giudice, G., & d’Antonio, L. (2013). Current views on EDDS use for ex situ washing of potentially toxic metal contaminated soils. Reviews in Environmental Science and Bio/Technology, 12(4), 391–8. doi:10.1007/s11157-013-9309-z.CrossRefGoogle Scholar
  6. Fedje, K. K., Yillin, L., & Strömvall, A.-M. (2013). Remediation of metal polluted hotspot areas through enhanced soil washing—evaluation of leaching methods. J Environ Manage, 128, 489–96. doi:10.1016/j.jenvman.2013.05.056.CrossRefGoogle Scholar
  7. Ferraro, A., Fabbricino, M., van Hullebusch, E. D., Esposito, G., & Pirozzi, F. (2016). Effect of soil/contamination characteristics and process operational conditions on aminopolycarboxylates enhanced soil washing for heavy metals removal: a review. Reviews in Environmental Science and Bio/Technology. In press. doi:10.1007/s11157-015-9378-2
  8. Ferraro, A., van Hullebusch, E. D., Huguenot, D., Fabbricino, M., & Esposito, G. (2015). Application of an electrochemical treatment for EDDS soil washing solution regeneration and reuse in a multi-step soil washing process: case of a Cu contaminated soil. J Environ Manage, 163, 62–9. doi:10.1016/j.jenvman.2015.08.004.CrossRefGoogle Scholar
  9. Friedly, J. C., Kent, D. B., & Davis, J. A. (2002). Simulation of the mobility of metal−EDTA complexes in groundwater: the influence of contaminant metals. Environ Sci Technol, 36(3), 355–63.CrossRefGoogle Scholar
  10. Frunzo, L., Esposito, G., Pirozzi, F., & Lens, P. (2012). Dynamic mathematical modeling of sulfate reducing gas-lift reactors. Process Biochem, 47, 2172–81. doi:10.1016/j.procbio.2012.08.010.CrossRefGoogle Scholar
  11. Hseu, Z.-Y., Jien, S.-H., Wang, S.-H., & Deng, H.-W. (2013). Using EDDS and NTA for enhanced phytoextraction of Cd by water spinach. J Environ Manage, 117, 58–64. doi:10.1016/j.jenvman.2012.12.028.CrossRefGoogle Scholar
  12. Janssen, P. H. M., & Heuberger, P. S. C. (1995). Calibration of process-oriented models. Ecol Model, 83, 55–66. doi:10.1016/0304-3800(95)00084-9.CrossRefGoogle Scholar
  13. Jones, P. W., & Williams, D. R. (2001). Chemical speciation used to assess [S, S′]-ethylenediaminedisuccinic acid (EDDS) as a readily-biodegradable replacement for EDTA in radiochemical decontamination formulations. Appl Radiat Isot, 54(4), 587–93. doi:10.1016/S0969-8043(00)00297-9.CrossRefGoogle Scholar
  14. Kedziorek, M. A. M., Dupuy, A., Bourg, A. C. M., & Compère, F. (1998). Leaching of Cd and Pb from a polluted soil during the percolation of EDTA: laboratory column experiments modeled with a non-equilibrium solubilization step. Environ Sci Technol, 32(11), 1609–14. doi:10.1021/es970708m.CrossRefGoogle Scholar
  15. Kirpichtchikova, T. A., Manceau, A., Spadini, L., Panfili, F., Marcus, M. A., & Jacquet, T. (2006). Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling. Geochim Cosmochim Acta, 70(9), 2163–90. doi:10.1016/j.gca.2006.02.006.CrossRefGoogle Scholar
  16. Lim, T.-T., Tay, J.-H., & Wang, J.-Y. (2004). Chelating-agent-enhanced heavy metal extraction from a contaminated acidic soil. J Environl Eng, 130(1), 59–66. doi:10.1061/(ASCE)0733-9372(2004)130:1(59).CrossRefGoogle Scholar
  17. Lingua, G., Todeschini, V., Grimaldi, M., Baldantoni, D., Proto, A., Cicatelli, A., et al. (2014). Polyaspartate, a biodegradable chelant that improves the phytoremediation potential of poplar in a highly metal-contaminated agricultural soil. J Environ Manage, 132, 9–15. doi:10.1016/j.jenvman.2013.10.015.CrossRefGoogle Scholar
  18. Mohanty, B., & Mahindrakar, A. B. (2011). Removal of heavy metal by screening followed by soil washing from contaminated soil. International Journal of Technology and Engineering System, 2(3), 290–3.Google Scholar
  19. Peters, R. W. (1999). Chelant extraction of heavy metals from contaminated soils. J Hazard Mater, 66(1), 151–210. doi:10.1016/S0304-3894(99)00010-2.CrossRefGoogle Scholar
  20. Pueyo, M., Mateu, J., Rigol, A., Vidal, M., López-Sánchez, J. F., & Rauret, G. (2008). Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environ Pollut, 152(2), 330–41. doi:10.1016/j.envpol.2007.06.020.CrossRefGoogle Scholar
  21. Qiu, R., Zou, Z., Zhao, Z., Zhang, W., Zhang, T., Dong, H., & Wei, X. (2010). Removal of trace and major metals by soil washing with Na2EDTA and oxalate. J Soils Sediments, 10(1), 45–53. doi:10.1007/s11368-009-0083-z.CrossRefGoogle Scholar
  22. Samani, Z., Hu, S., Hanson, T., & Heil, D. M. (1998). Remediation of lead contaminated soil by column extraction with EDTA: II. Modeling. Water Air Soil Pollut, 102(3–4), 221–38. doi:10.1023/A:1004901013628.
  23. Sarkar, D., Andra, S. S., Saminathan, S. K. M., & Datta, R. (2008). Chelant-aided enhancement of lead mobilization in residential soils. Environ Pollut, 156(3), 1139–48. doi:10.1016/j.envpol.2008.04.004.CrossRefGoogle Scholar
  24. Steele, M. C., & Pichtel, J. (1998). Ex-situ remediation of a metal-contaminated superfund soil using selective extractants. J Environ Eng, 124(7), 639–45. doi:10.1061/(ASCE)0733-9372(1998)124:7(639).CrossRefGoogle Scholar
  25. Tsang, D. C. W., Lo, I. M. C., & Chan, K. L. (2007). Modeling the transport of metals with rate-limited EDTA-promoted extraction and dissolution during EDTA-flushing of copper-contaminated soils. Environ Sci Technol, 41(10), 3660–6. doi:10.1021/es061756m.CrossRefGoogle Scholar
  26. Tsang, D. C. W., Lo, I. M. C., & Surampalli, R. Y. (2012). Design, implementation, and economic/societal considerations of chelant-enhanced soil washing. In D. C. W. Tsang, I. M. C. Lo, & R. Y. Surampalli (Eds.), Chelating agents for land decontamination technologies (pp. 1–26). Reston, Virginia: American Society of Civil Engineers.CrossRefGoogle Scholar
  27. USEPA (1995). Method 3051: Microwave assisted acid digestion of sediments, sludges, soils, and oils. Test Methods for Evaluating Solid Waste. Accessed 31 Aug 2015.
  28. Van Benschoten, J. E., Matsumoto, M. R., & Young, W. H. (1997). Evaluation and analysis of soil washing for seven lead-contaminated soils. J Environ Eng, 123(3), 217–24. doi:10.1061/(ASCE)0733-9372(1997)123:3(217).CrossRefGoogle Scholar
  29. Vaxevanidou, K., Papassiopi, N., & Paspaliaris, I. (2008). Removal of heavy metals and arsenic from contaminated soils using bioremediation and chelant extraction techniques. Chemosphere, 70, 1329–37. doi:10.1016/j.chemosphere.2007.10.025.CrossRefGoogle Scholar
  30. Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, 2011, 1–20. doi:10.5402/2011/402647.CrossRefGoogle Scholar
  31. Yip, T. C. M., Tsang, D. C. W., Ng, K. T. W., & Lo, I. M. C. (2009). Empirical modeling of heavy metal extraction by EDDS from single-metal and multi-metal contaminated soils. Chemosphere, 74(2), 301–7. doi:10.1016/j.chemosphere.2008.09.006.CrossRefGoogle Scholar
  32. Yip, T. C. M., Yan, D. Y. S., Yui, M. M. T., Tsang, D. C. W., & Lo, I. M. C. (2010). Heavy metal extraction from an artificially contaminated sandy soil under EDDS deficiency: significance of humic acid and chelant mixture. Chemosphere, 80(4), 416–21. doi:10.1016/j.chemosphere.2010.03.033.CrossRefGoogle Scholar
  33. Zou, Z., Qiu, R., Zhang, W., Dong, H., Zhao, Z., Zhang, T., et al. (2009). The study of operating variables in soil washing with EDTA. Environ Pollut, 157(1), 229–36. doi:10.1016/j.envpol.2008.07.009.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Alberto Ferraro
    • 1
    • 2
    • 3
  • Massimiliano Fabbricino
    • 2
  • Eric D. van Hullebusch
    • 3
  • Giovanni Esposito
    • 1
  1. 1.Department of Civil and Mechanical EngineeringUniversity of Cassino and Southern LazioCassinoItaly
  2. 2.Department of Civil, Architectural and Environmental EngineeringUniversity of Naples “Federico II”NaplesItaly
  3. 3.Laboratoire Géomatériaux et Environnement (EA 4508)Université Paris-Est, UPEMMarne-la-ValléeFrance

Personalised recommendations