Skip to main content
Log in

Hydraulic Performance and Pollutant Concentration Profile in a Stormwater Runoff Filtration Systems

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Stormwater filtration system has proven to be effective for the removal of dissolved and particulate pollutants from roadways and car parking areas. However, the long-term treatment performance of filtration systems strongly depends on the hydraulic conductivity and sorption capacity of the filter media. This paper sought to provide information regarding the hydraulic performance, characteristics and metal concentration profiles in sediments accumulated at the surface of filtration systems (SDPL) and core filter media (FMC). The lifespan of the filter media was used to estimate the lifespan of the filter media. The results showed that saturated hydraulic conductivity of the filtration systems have significantly reduced over the operational time, yet acceptable (Kf = 5.9 × 10−5 to 1.4 × 10−4 m/s). The accumulated sediments (SDPL) were predominantly composed of fine particles with 70 % < 63 μm but the heavy metals were rather uniformly distributed in the different size fractions. The concentrations of heavy metals, particularly Cu, Pb and Zn were significantly higher in the SDPL and decreased with depth of the filter bed. However, Cr and Ni increased with depth of filter media demonstrating their removal was mainly by adsorption. Concentrations of Ba, Mn, Ti and V were comparable to Zn levels indicating comparable concentrations in roadway runoff. Simultaneous adsorption of multiple heavy metals in a column experiment demonstrated that the filter media could remain operational for over 34 years. However, there is a significant concern about their lifespan, particularly due to significant reduction in the hydraulic performance and the possibility of clogging of the systems over time. Therefore, to minimize hydraulic failure, the accumulated sediment be scraped off every 7 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • 2506-2, ÖNORM B. (2012). Regenwasser-Sickeranlagen für Abläufe von Dachflächen und befestigten Flächen. s.l. : Österreichisches Normungsinstitut.

  • Andral, M. C., Roger, S., Montréjaud-Vignoles, M., & Herremans, L. (1999). Particle size distribution and hydrodynamic characteristics of solid matter carried by runoff from motorways. Water Environment Research, 71(4), 398–407.

    Article  CAS  Google Scholar 

  • Athanasiadis, K. (2005). On-site infiltration of roof runoff by using clinoptilolite as an artificial barrier material, PhD dissertation of Technical University of Munich.

    Google Scholar 

  • Ball, J. E., Jenks, R., & Aubourg, D. (1998). An assessment of the availability of pollutant constituents on road surfaces. Science of the Total Environment, 209, 243–254.

    Article  CAS  Google Scholar 

  • BMFLU. 98. (2010). Verordnung: des Bundesministers für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft über den guten chemischen Zustand des Grundwassers [Qualitätszielverordnung Chemie Grundwasser – QZV Chemie GW]. p. 10.

  • Bratieres, K., Schang, C., Deletic, A., McCarthy, D. T., Bratieres, K., Schang, C., Deletic, A., & McCarthy, D. T. (2012). Performance of enviss™ stormwater filters: results of a laboratory trial. Water Science and Technology, 66(4), 719–727.

    Article  CAS  Google Scholar 

  • Clark, S. E., & Pitt, R. (2009). Solids removal in storm-water filters modeled using a power equation. Journal of Environmental Engineering, 135, 896–899.

    Article  CAS  Google Scholar 

  • Fuerhacker, M., Haile, T. M., Monai, B., & Mentler, A. (2011). Performance of a filtration system equipped with filter media for parking lot runoff treatment. Desalination, 275, 118–125.

    Article  CAS  Google Scholar 

  • Furumai, H., Balmer, H., & Boller, M. (2002). Dynamic behavior of suspended pollutants and particle size distribution in highway runoff. Water Science and Technology, 46, 413–418.

    CAS  Google Scholar 

  • Genç-Fuhrman, H., Mikkelsen, P. K., & Ledin, A. (2007). Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: experimental comparison of 11 different sorbents. Water Research, 41, 591–602.

    Article  CAS  Google Scholar 

  • Gill, L. W., Ring, P., Higgins, M. P., & Johnston, P. M. (2014). Accumulation of heavy metals in a constructed wetland treating road runoff. Ecological Engineering, 70, 133–139.

    Article  Google Scholar 

  • Göbel, P., Dierkes, C., & Coldewey, W. G. (2007). Storm water runoff concentration matrix for urban areas. Journal of Contaminant Hydrology, 91(1-2), 26–42.

    Article  CAS  Google Scholar 

  • Grebel, J. E., Mohanty, S. K., Torkelson, A. A., Boehm, A. B., Higgins, C. P., Maxwell, R. M., Nelson, K. L., & Sedlak, D. L. (2013). Engineered infiltration systems for urban stormwater reclamation. Environmental Engineering Science, 30(8), 437–454.

    Article  CAS  Google Scholar 

  • Gromaire-Mertz, M. C., Garnaud, S., Gonzalez, A., & Chebbo, G. (1999). Characterisation of urban runoff pollution in Paris. Water Science and Technology, 39(2), 1–8.

    Article  CAS  Google Scholar 

  • Gunawardana, C., Egodawatta, P., & Goonetilleke, A. (2014). Role of particle size and composition in metal adsorption by solids deposited on urban road surfaces. Environmental Pollution, 184, 44–53.

    Article  CAS  Google Scholar 

  • Haile, T.M. (2008). Removal of stormwater runoff pollutants from parking area using natural geomedia filter materials. University of Natural Resources and Life Sciences, Vienna : Master thesis.

  • Haile, T.M., Kammerer, G., Fürhacker, M. (2014). Probleme bei Planung und Betrieb von Absetzbecken für Straßenabwässer. Österreichische Wasser- und Abfallwirtschaft: 66, Vols. ISSN 0945-358X, pp. 112 - 119.

  • Hatt, B., Flecher, T., & Deltic, A. (2008). Hydraulic and pollutant removal performance of fine media stormwater filtration systems. Environmental Science and Technology, 42, 2535–2541.

    Article  CAS  Google Scholar 

  • Helmreich, B., Hilliges, R., Schriewer, A., & Horn, H. (2010). Runoff pollutants of a highly trafficked urban road—correlation analysis and seasonal influences. Chemosphere, 80(9), 991–997.

    Article  CAS  Google Scholar 

  • Herngren, L., Goonetilleke, A., & Ayoko, G. A. (2006). Analysis of heavy metals in road deposited sediments. Analytica Chimica Acta, 571, 270–278.

    Article  CAS  Google Scholar 

  • Inczédy, J. (1966). Analytical applications of ion exchangers (pp. 1–80). Budapest: Pergamon Press.

    Google Scholar 

  • Ingvertsen, S. T., Cederkvist, K., Régent, Y., Sommer, H., Magid, J., & Jensen, M. B. (2012). Assessment of existing roadside swales with engineered filter soil: I. Characterization and lifetime expectancy. Journal of Environmental Quality, 41(6), 1960–1969.

    Article  CAS  Google Scholar 

  • Jensen, M. B., Holm, P. E., Laursen, J., & Hansen, H. C. B. (2006). Contaminant aspects of blackish surface deposits on highway roadsides. Water, Air, and Soil Pollution, 175, 305–321.

    Article  CAS  Google Scholar 

  • Kayhanian, M., McKenzie, E. R., Leatherbarrow, J. E., & Young, T. M. (2012). Characteristics of road sediment fractionated particles captured from paved surfaces, surface run-off and detention basins. Science of the Total Environment, 439, 172–186.

    Article  CAS  Google Scholar 

  • Koerner, G., & Koerner, R. (1992). Leachate flow rate behavior through geotextile and soil filters and possible remediation methods. Geotextiles and Geomembranes, 11, 401–430.

    Article  Google Scholar 

  • Li, H., & Davis, A. P. (2008). Heavy metal capture and accumulation in bioretention media. Environmental Science and Technology, 42(13), 5247–5253.

    Article  CAS  Google Scholar 

  • Li, Y., Lau, S., Kayhanian, M., & Stenstrom, M. K. (2006). Dynamic characteristics of particle size distribution in highway runoff: implications for settling tank design. Journal of Environmental Engineering, 132(8), 852–861.

    Article  CAS  Google Scholar 

  • Mousavi, S.-F., & Rezai, V. (1999). Evaluation of scraping treatments to restore initial infiltration capacity of three artificial recharge projects in central Iran. Hydrogeology Journal, 7, 490–500.

    Article  Google Scholar 

  • Paul, P., & Tota-Maharaj, K. (2015). Laboratory studies on granular filter and their relationship to geotextile for stormwater pollutant reduction. Water, 7, 1595–1609.

    Article  Google Scholar 

  • Paus, K.H., Morgan, J., Gulliver, J.S., Leiknes, T., Hozalski, R.M. Assessment of the hydraulic and toxic metal removal capacities of bioretention cells after 2 to 8 years of service. Water Air Soil Pollut, 225.

  • Reynolds, W., Elrick, D., Youngs, E. Reynolds, W. (2002). Single-ring and double- or concentric-ring infiltrometers. [book auth.] J. H. & Topp, G. C. Dane. Methods of Soil Analysis Part 4 –Physical Methods. Wisconsin: Soil Science Society of America.

  • Roger, S., Montréjaud-Vignoles, M., Andral, M. C., Herremans, L., & Fortuné, J. P. (1998). Mineral, physical and chemical analysis of the solid matter carried by motorway runoff water. Water Research, 32(4), 1119–1125.

    Article  CAS  Google Scholar 

  • Sansalone, J. J., & Buchberger, S. G. (1997). Partitioning and first flush of metals in urban roadway storm water. Journal of Environmental Engineering, 123(2), 134–143.

    Article  CAS  Google Scholar 

  • Sébastian, C., Barraud, S., Ribun, S., Zoropogui, A., Blaha, D., Becouze-Lareure, C., Kouyi, G. L., & Cournoyer, B. (2014). Accumulated sediments in a detention basin: chemical and microbial hazard assessment linked to hydrological processes. Environmental Science and Pollution Research International, 21(8), 5367–5378.

    Article  CAS  Google Scholar 

  • Wium-Andersen, T., Nielsen, A. H., Hvitved-Jacobsen, T., Kristensen, N. K., Brix, H., Arias, C., & Vollertsen, J. (2012). Sorption media for stormwater treatment—a laboratory evaluation of five low-cost media for their ability to remove metals and phosphorus from artificial stormwater. Water Environment Research, 84(7), 605–616.

    Article  CAS  Google Scholar 

  • Zandres, J. M. (2005). Road sediment: characterization and implications for the performance of vegetated strips for treating road run-off. Science of the Total Environment, 339, 41–47.

    Article  CAS  Google Scholar 

  • Zgheib, S., Moilleron, R., Saad, M., & Chebbo, G. (2011). Partition of pollution between dissolved and particulate phases: what about emerging substances in urban stormwater catchments? Water Research, 45, 913–925.

    Article  CAS  Google Scholar 

  • Zhao, H., Li, X., Wang, X., & Tian, D. (2010). Grain size distribution of road-deposited sediment and its contribution to heavy metal pollution in urban runoff in Beijing, China. Journal of Hazardous Materials, 183, 203–210.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was conducted under the projects “ÖNORM and SARIT.” The Project was supported by the Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management and the Company SW Umwelttechnik AG. They are gratefully acknowledged for providing funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadele Measho Haile.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haile, T.M., Hobiger, G., Kammerer, G. et al. Hydraulic Performance and Pollutant Concentration Profile in a Stormwater Runoff Filtration Systems. Water Air Soil Pollut 227, 34 (2016). https://doi.org/10.1007/s11270-015-2736-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2736-4

Keywords

Navigation