Skip to main content

Advertisement

Log in

Structural and Functional Responses of Macrobenthic Communities to Mercury Contamination

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study focuses on the impact of mercury contamination on the structure and functioning of the macrobenthic communities of Ria de Aveiro (Portugal), using secondary production as an indicator of population fitness. Through the implementation of this new approach which combines the static and dynamic variables of a population, it is possible to better understand ecosystems’ responses to external stressors. For that, a monthly monitoring programme was implemented at three different contaminated sites and data collected was analysed combining structural and functional levels. A permutational multivariate analysis of variance (PERMANOVA) detected significant differences in macrobenthic assemblages between the three sampling sites along the mercury gradient. The most contaminated area was characterized by low biomass and species richness, while the least contaminated one presented slightly higher values. A significant negative correlation was observed between mercury concentration in the sediments and biomass of macrobenthic species (r = −0.50; P < 0.05). However, species diversity (heterogeneity) and total secondary production presented irregular patterns in response to mercury contamination. In the present study, the highest values of total biomass and secondary production were, curiously, observed in the intermediate contaminated area, followed by the least contaminated site and finally the most contaminated one. This response seems to be related to the hormesis phenomenon. Moreover, distinct taxonomic and trophic groups showed different responses to mercury contamination, while body size was the trait that best responded to the contaminant stressor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrantes, I., Dias, J. M., & Rocha, F. (2006). Spatial and temporal variability of suspended sediments concentration in Ria de Aveiro and fluxes between the lagoon and the ocean. Journal of Coastal Research, 39, 718–723.

    Google Scholar 

  • Alonso, D., Pineda, P., Olivero, J., González, H., & Campos, N. (2000). Mercury levels in muscle of two fish species and sediments from the Cartagena Bay and the Ciénaga Grande de Santa Marta, Colombia. Environment Pollution, 109, 157–163.

    Article  CAS  Google Scholar 

  • Anderson, M. J., Gorley, R. N., & Clarke, K. R. (2008). PERMANOVA+ for PRIMER: guide to software and statistical methods. Plymouth: PRIMER-E.

    Google Scholar 

  • Anderson, M. J., & Willis, T. J. (2003). Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology, 84, 511–525.

    Article  Google Scholar 

  • Baeta, A., Valiela, I., Rossi, F., Pinto, R., Richard, P., Niquil, N., & Marques, J. C. (2009). Eutrophication and trophic structure in response to the presence of the eelgrass Zostera noltii. Marine Biology, 156, 2107–2120.

    Article  Google Scholar 

  • Bloom, N. S., Moretto, L. M., Scopece, P., & Ugo, P. (2004). Seasonal cycling of mercury and monomethyl mercury in the Venice Lagoon (Italy). Marine Chemistry, 91, 85–99.

    Article  CAS  Google Scholar 

  • Brey, T. (2001). Population dynamics in benthic invertebrates. A virtual handbook. Version 01.2 [online]. Available from http://www.thomas-brey.de/science/virtualhandbook.

  • Calabrese, E. J. (2008). Hormesis: why it is important to toxicology and toxicologists. Environmental Toxicology and Chemistry, 27, 1451–1474.

    Article  CAS  Google Scholar 

  • Calabrese, E. J., & Blain, R. (2004). Metals and hormesis. Journal of Environmental Monitoring, 6, 14–19.

    Article  Google Scholar 

  • Calabretta, C. J., & Oviatt, C. A. (2008). The response of benthic macrofauna to anthropogenic stress in Narragansett Bay, Rhode Island: a review of human stressors and assessment of community conditions. Marine Pollution Bulletin, 56, 1680–1695.

    Article  CAS  Google Scholar 

  • Cardoso, I., Granadeiro, J. P., & Cabral, H. (2008). Benthic prey quantity and quality in the main mudflat feeding areas of the Tagus Estuary: implications for bird and fish populations. Ciencia Marina, 34(3), 283–296.

    Google Scholar 

  • Cardoso, P. G., Sousa, E., Matos, P., Henriques, B., Pereira, E., & Pardal, M. A. (2013). The impact of mercury contamination on the population dynamics and productivity of the gastropod Peringia ulvae. Estuarine, Coastal and Shelf Science, 129, 189–197.

    Article  CAS  Google Scholar 

  • Chen, K., Tian, S., & Jiao, J. (2010). Macrobenthic community in Tolo Harbour, Hong Kong and its relations with heavy metals. Estuaries and Coasts, 33, 600–608.

    Article  Google Scholar 

  • Coelho, J. P., Policarpo, E., Pardal, M. A., Millward, G. E., Pereira, M. E., & Duarte, A. C. (2007). Mercury contamination in invertebrate biota in a temperate coastal lagoon (Ria de Aveiro, Portugal). Marine Pollution Bulletin, 54, 475–80.

    Article  CAS  Google Scholar 

  • Costley, C. T., Mossop, K. F., Dean, J. R., Garden, L. M., Marshall, J., & Carroll, J. (2000). Determination of mercury in environmental and biological samples using pyrolysis atomic absorption spectrometry with gold amalgamation. Analytica Chimica Acta, 405, 179–83.

    Article  CAS  Google Scholar 

  • Dauvin, J. C. (2008). Effects of heavy metal contamination on the macrobenthic fauna in estuaries: the case of the Seine estuary. Marine Pollution Bulletin, 57, 160–69.

    Article  CAS  Google Scholar 

  • De Marco, S. G., Botté, S. E., & Marcovecchio, J. E. (2006). Mercury distribution in abiotic and biological compartments within several estuarine systems from Argentina: 1980–2005 period. Chemosphere, 65, 213–223.

    Article  Google Scholar 

  • Dias, J. M., & Fernandes, E. H. (2006). Tidal and subtidal propagation in two Atlantic estuaries: Patos Lagoon (Brazil) and Ria de Aveiro Lagoon (Portugal). Journal of Coastal Research, 39, 1422–1426.

    Google Scholar 

  • Dias, J. M., Lopes, J. F., & Dekeyser, I. (2000). Tidal propagation in Ria de Aveiro Lagoon, Portugal. Physics and Chemistry of Earth, 25, 369–374.

    Article  Google Scholar 

  • Dolbeth, M., Lillebo, A. I., Cardoso, P. G., Ferreira, S. M., & Pardal, M. A. (2005). Annual production of estuarine fauna in different environmental conditions: an evaluation of the estimation methods. Journal of Experimental Marine Biology and Ecology, 326, 115–27.

    Article  Google Scholar 

  • Dolbeth, M., Cusson, M., Sousa, R., & Pardal, M. A. (2012). Secondary production as a tool for better understanding of aquatic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, 69, 1230–1253.

    Article  Google Scholar 

  • Dolbeth, M., Dolédec, S., & Pardal, M. A. (2015). Relationship between functional diversity and benthic secondary production in a disturbed estuary. Marine Ecology Progress Series, 539, 33–46.

    Article  Google Scholar 

  • Donkor, A. K., Bonzongo, J. C., Nartey, V. K., & Adotey, D. K. (2006). Mercury in different environmental compartments of the Pra River Bay, Ghana. Science of Total Environment, 368, 164–176.

    Article  CAS  Google Scholar 

  • Elliot, M., & Griffiths, A. H. (1986). Mercury contamination in components of an estuarine ecosystem. Water and Science Technology, 18, 161–170.

    Google Scholar 

  • Gray, J. S., & Elliott, M. (2009). Ecology of marine sediments. In Oxford Biology (2nd ed., p. 215).

    Google Scholar 

  • Grilo, T. F., Cardoso, P. G., & Pardal, M. A. (2012). Implications of Zostera noltii recolonization on Peringia ulvae population structure success. Marine Environmental Research, 73, 78–84.

    Article  CAS  Google Scholar 

  • Krebs, C. J. (1999). Ecological methodology (p. 620). Menlo Park: Addison-Welsey Educational Publishers.

    Google Scholar 

  • Millward, R. N., & Klerks, P. L. (2002). Contaminant-adaptation and community tolerance in ecological risk assessment: introduction. Human and Ecological Risk Assessment, 8, 921–932.

    Article  Google Scholar 

  • Mucha, A. P., Vasconcelos, M. T. S. D., & Bordalo, A. A. (2005). Spatial and seasonal variations of the macrobenthic community and metal contamination in the Douro estuary (Portugal). Marine Environment Research, 60, 531–550.

    Article  CAS  Google Scholar 

  • Olsgard, F. (1999). Effects of copper contamination on recolonization of subtidal marine soft sediments—experimental field study. Marine Pollution Bulletin, 38, 448–462.

    Article  CAS  Google Scholar 

  • Pereira, M. E., Lillebø, A. I., Pato, P., Válega, M., Coelho, J. P., Lopes, C., Rodrigues, S., Cachada, A., Otero, M., Pardal, M. A., & Duarte, A. C. (2009). Mercury pollution in Ria de Aveiro (Portugal): a review of the system assessment. Environment Monitoring and Assessment, 155, 39–49.

    Article  CAS  Google Scholar 

  • Pearson, T., & Rosenberg, R. (1978). Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology: An Annual Review, 16, 229–311.

    Google Scholar 

  • Rice, K. M., Walker, Jr. E. M., Wu, M., Gillette, C., Blough, E. R. (2014). Environmenatl mercury and its toxic effects. Journal of Preventive Medicine and Public Health, 47, 74–83.

  • Rodrigues, A., Quintino, V., Sampaio, L., Freitas, R., & Neves, R. (2011). Benthic biodiversity patterns in Ria de Aveiro, western Portugal: environmental-biological relationships. Estuarine, Coastal and Shelf Science, 95, 338–348.

    Article  CAS  Google Scholar 

  • Rothenberg, S. E., Ambrose, R. F., & Jay, J. A. (2008). Mercury cycling in surface water, pore water and sediments of Mugu Lagoon, CA, USA. Environmental Pollution, 154, 32–45.

    Article  CAS  Google Scholar 

  • Zar, J. (1999). Biostatistical analysis (4th ed.). Upper Saddle River, NJ: Prentice-Hall International.

    Google Scholar 

Download references

Acknowledgments

This work was supported by FCT (Fundação para a Ciência e Tecnologia) through a project FCOMP-01-0124-FEDER-010598 (MERCOAST)—PTDC/MAR/10916/2008—and by POPH and QREN—Promotion of Scientific Job funded by the European Social Fund and national funds of MEC. The authors are indebted to all the colleagues that assisted in the field and lab work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Cardoso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matos, P., Sousa, E., Pardal, M.A. et al. Structural and Functional Responses of Macrobenthic Communities to Mercury Contamination. Water Air Soil Pollut 227, 41 (2016). https://doi.org/10.1007/s11270-015-2734-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2734-6

Keywords

Navigation