Advertisement

Seed Germination and Seedling Growth of Five Plant Species for Assessing Potential Strategies to Stabilizing or Recovering Metals from Mine Tailings

  • Eduardo González-Valdez
  • Alejandro AlarcónEmail author
  • Ronald Ferrera-Cerrato
  • Héctor René Vega-Carrillo
  • María Maldonado-Vega
  • Miguel Ángel Salas-Luévano
Article

Abstract

This study evaluated the seed germination and dry mass accumulation of five plant species (Brassica napus L., Brassica rapa L., Celosia cristata L., Tagetes erecta L., and Calendula officinalis L.) grown in five mine tailings collected from Zacatecas, Mexico. Sampled mines were El Bote, Noria de San Pantaleon, Noria de Angeles, Vetagrande, and El Bordo-El Lampotal, in which Pb (3.9–69.7 mg kg−1), As (0.7–26.2 mg kg−1), Hg (0.05–0.10 mg kg−1), and Au (0.01–0.02 mg kg−1) were detected. The most abundant elements at each mine site were as follows: Pb and Au (3.9 and 0.023 mg kg−1, respectively) for El Bote; As, Pb, and Hg (7.4, 6.1, and 0.10 mg kg−1, respectively) for the Noria de San Pantaleon; Pb, As, and Hg (69.7, 26.2, and 0.08 mg kg−1, respectively) for Noria de Angeles; Pb (20.8 mg kg−1) for Vetagrande; and Pb (5.3 mg kg−1) for El Bordo-El Lampotal. Both Noria de Angeles and Vetagrande mine tailings had high values of sodium, sulfates, and electrical conductivity, chemical properties that impaired seed germination and dry mass accumulation. Regardless the mining tailings, B. napus showed high seed germination (66 %), tolerance, growth, and total dry mass accumulation (0.041 g). Either B. napus or C. cristata has good potential for stabilizing or recovering metals from mine tailings.

Keywords

Contamination Mining Phytotoxicity Toxic metals Plant selection Brassica Celosia 

Notes

Acknowledgments

Eduardo González-Valdez thanks the National Council of Science and Technology (CONACYT-Mexico) for the financial support during his Master Program. Authors thank the suggestions of two anonymous reviewers that help on improving this manuscript.

References

  1. Abdel-Farid, I. B., & Mohamed, A. E. S. (2013). Heavy metal and element profiling of Brassica rapa. Journal für Verbraucherschutz und Lebensmittelsicherheit, 8, 201–204.CrossRefGoogle Scholar
  2. Abdul-Wahab, S. A., & Marikar, F. A. (2012). The environmental impact of gold mines: pollution by heavy metals. Central European Journal of Engineering, 2(2), 304–313.Google Scholar
  3. Adair, B. M., Waters, S. B., Devesa, V., Drobna, Z., Styblo, M., & Thomas, D. J. (2005). Commonalities in metabolism of arsenicals. Environmental Chemical, 2(3), 161–166.CrossRefGoogle Scholar
  4. Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere, 91, 869–881.CrossRefGoogle Scholar
  5. Andrew, A. S., Burgess, J. L., Meza, M. M., Demidenko, E., Waugh, M. G., Hamilton, J. W., & Karagas, M. R. (2006). Arsenic exposure is associated with decreased DNA repair in vitro and in individuals exposed to drinking water arsenic. Environmental Health Perspectives, 114(8), 1193–1198.CrossRefGoogle Scholar
  6. Atici, O., Adar, G., & Battal, P. (2005). Changes in phytohormone contents in chickpea seeds germinating under lead or zinc stress. Biologia Plantarum, 49(2), 215–222.CrossRefGoogle Scholar
  7. Bacchetta, G., Cappai, G., Carucci, A., & Tamburini, E. (2015). Use of native plants for the remediation of abandoned mine sites in Mediterranean semiarid environments. Bulletin of Environmental Contamination & Toxicology, 94, 326–333.CrossRefGoogle Scholar
  8. Bareen, F. E. (2012). Chelate assisted phytoextraction using oil seed Brassicas. Environmental Pollution, 21, 289–311.CrossRefGoogle Scholar
  9. Bech, J., Duran, P., Roca, N., Poma, W., Sánchez, I., Barceló, J., Boluda, R., Roca-Pérez, L., & Poschenrieder, C. (2012). Shoot accumulation of several trace elements in native plant species from contaminated soils in the Peruvian Andes. Journal of Geochemical Exploration, 113, 106–111.CrossRefGoogle Scholar
  10. Bosiacki, M. (2009). Phytoextraction of cadmium and lead by selected cultivars of Tagetes erecta L. Part II. Contents of Cd and Pb in plants. Acta Scientiarum Polonorum Hortorum Cultus, 8, 15–26.Google Scholar
  11. Boularbah, A., Schwartz, C., Bitton, G., & Morel, J. L. (2006). Heavy metal contamination from mining sites in South Morocco: 1 Use of a biotest to assess metal toxicity of tailings and soils. Chemosphere, 63, 802–810.CrossRefGoogle Scholar
  12. Brunetti, G., Farrag, K., Rovira, P. S., Nigro, F., & Senesi, N. (2011). Greenhouse and field studies on Cr, Cu, Pb and Zn phytoextraction by Brassica napus from contaminated soils in the Apulia region, southern Italy. Geoderma, 160, 517–523.CrossRefGoogle Scholar
  13. Cao, A., Carucci, A., Lai, T., Bacchetta, G., & Casti, M. (2009). Use of native species and biodegradable chelating agents in the phytoremediation of abandoned mining areas. Journal of Chemical Technology and Biotechnology, 84, 884–889.CrossRefGoogle Scholar
  14. Comino, E., Whiting, S. N., Neumann, P. M., & Baker, A. J. M. (2005). Salt (NaCl) tolerance in the Ni hyperaccumulator Alyssum murale and the Zn hyperaccumulator Thlaspi caerulescens. Plant and Soil, 270, 91–99.CrossRefGoogle Scholar
  15. Conesa, H. M., Faz, A., & Arnaldos, R. (2006). Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Unión mining district (SE Spain). Science of the Total Environment, 366, 1–11.CrossRefGoogle Scholar
  16. Danh, L. T., Truong, P., Mammucari, R., Tran, T., & Foster, N. (2009). Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. International Journal of Phytoremediation, 11, 664–691.CrossRefGoogle Scholar
  17. Das, M., & Maiti, S. K. (2007). Metal accumulation in 5 native plants growing on abandoned Cu-tailings ponds. Applied Ecology and Environmental Research, 5(1), 27–35.CrossRefGoogle Scholar
  18. Ehsan, S., Ali, S., Noureen, S., Mahmood, K., Farid, M., Ishaque, W., Shakoor, M. B., & Rizwan, M. (2014). Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicology and Environmental Safety, 106, 164–172.CrossRefGoogle Scholar
  19. Franco-Hernández, M. O., Vásquez-Murrieta, M. S., Patiño-Siciliano, A., & Dendooven, L. (2010). Heavy metals concentration in plants growing on mine tailings in Central Mexico. Bioresource Technology, 101, 3864–3869.CrossRefGoogle Scholar
  20. García-Lorenzo, M. L., Pérez-Sirvent, C., Martínez-Sánchez, M. J., & Molina-Ruiz, J. (2012). Trace elements contamination in an abandoned mining site in a semiarid zone. Journal of Geochemical Exploration, 113, 23–35.CrossRefGoogle Scholar
  21. Garg, N. M., & Singla, P. (2011). Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environmental Chemistry Letters, 9, 303–321.CrossRefGoogle Scholar
  22. González-Valdez, E., González-Reyes, E., Bedolla-Cedeño, C., Arrollo-Ordaz, E. L., & Manzanares-Acuña, E. (2008). Blood lead levels and risk factors for lead poisoning in Mexican children. Revista de la Facultad de Ingeniería de la Universidad de Antioquia, 43, 114–119.Google Scholar
  23. Grispen, V. M., Nelissen, H. J., & Verkleij, J. A. (2006). Phytoextraction with Brassica napus L.: A tool for sustainable management of heavy metal contaminated soils. Environmental Pollution, 144(1), 77–83.CrossRefGoogle Scholar
  24. Haluschak, P. (2006). Laboratory methods of soil analysis. Canada-Manitoba soil survey. 133 p. URL:www.manitoba.ca/agriculture/land/soilsurvey/pubs/laboratory_methods_of_ soil_analysis.pdf. Retrieved: Noviembre 15th, 2015.
  25. Haque, N., Peralta-Videa, J. R., Jones, G. L., Gill, T. L., & Gardea-Torresdey, J. L. (2008). Screening the phytoremediation potential of desert broom (Baccharis sarothroides Gray) growing on mine tailings in Arizona, USA. Environmental Pollution, 153, 362–368.CrossRefGoogle Scholar
  26. Hernández-Acosta, E., Mondragón-Romero, E., Cristobal-Acevedo, D., Rubiños-Panta, J. E., & Robledo-Santoyo, E. (2009). Vegetation, mining tailings and potentially toxic elements of a jal from Pachuca, Hidalgo, México. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 15(2), 109–114.Google Scholar
  27. Hoang-Ha, N. T., Sakakibaraa, M., Sanob, S., & Nhuanc, M. T. (2011). Uptake of metals and metalloids by plants growing in a lead-zinc mine area, Northern Vietnam. Journal of Hazardous Materials, 186, 1384–1391.CrossRefGoogle Scholar
  28. Hopenhayn, C. (2006). Arsenic in drinking water: impact on human health. Elements, 2, 103–107.CrossRefGoogle Scholar
  29. Hudson-Edwards, K. A., Jamieson, H. E., & Lottermoser, B. G. (2011). Mine wastes: mine wastes: past, present, future. Elements, 7(6), 375–380.CrossRefGoogle Scholar
  30. Hung-Yu, L., & Zueng-Sang, C. (2009). In-situ selection of suitable plants for the phytoremediation of multi-metals-contaminated sites in Central Taiwan. International Journal of Phytoremediation, 11(3), 235–250.CrossRefGoogle Scholar
  31. Jadia, C. D., & Fulekar, M. H. (2009). Phytoremediation of heavy metals: recent techniques. African Journal of Biotechnology, 8(6), 921–928.Google Scholar
  32. Jamal, A., Ayub, N., Usman, M., & Khan, A. G. (2002). Arbuscular mycorrhizal fungi enhance zinc and nickel uptake from contaminated soil by soybean and lentil. International Journal of Phytoremediation, 4(3), 205–221.CrossRefGoogle Scholar
  33. Ji, K., Kim, J., Lee, M., Park, S., Kwon, H. J., Cheong, H. K., Jang, J. Y., Kim, D. S., Yu, S., Kim, Y. W., Lee, K. Y., Yang, S. O., Jhung, J., Yang, W. H., Paek, D. H., Hongm, Y. C., & Choi, K. (2013). Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea. Environmental Pollution, 178, 322–328.CrossRefGoogle Scholar
  34. Johnson, A., Singhal, N., & Hashmatt, M. (2011). Metal-plant interactions: toxicity and tolerance. Environmental Pollution, 20, 29–63.CrossRefGoogle Scholar
  35. Kandil, A. A., Sharief, A. E., Abido, W. A. E., & Ibrahim, M. M. O. (2012). Response of some canola cultivars (Brassica napus L.) to salinity stress and its effect on germination and seedling properties. Journal of Crop Science, 3(3), 95–103.Google Scholar
  36. Kanwal, U., Ali, S., Shakoor, M. B., Farid, M., Hussain, S., Yasmeen, T., Adrees, M., Bharwana, S. A., & Abbas, F. (2014). EDTA ameliorates phytoextraction of lead and plant growth by reducing morphological and biochemical injuries in Brassica napus L. under lead stress. Environmental Science and Pollution Research, 21(16), 9899–9910.CrossRefGoogle Scholar
  37. Khan, A. G. (2005). Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. Journal of Trace Elements in Medicine and Biology, 18, 355–364.CrossRefGoogle Scholar
  38. Kos, B., Grcman, H., & Leštan, D. (2003). Phytoextraction of lead, zinc and cadmium from soil by selected plants. Plant, Soil and Environment, 49(12), 548–553.Google Scholar
  39. Lamb, A. E., Anderson, C. W. N., & Haverkamp, R. G. (2001). The extraction of gold from plants and its application to phytomining. Chemistry in New Zealand, 65(2), 31–33.Google Scholar
  40. Lamhamdi, M., Bakrim, A., Aarab, A., Lafont, R., & Sayah, F. (2011). Lead phytotoxicity on wheat (Triticum aestivum L.) seed germination and seedlings growth. Comptes Rendus Biologies, 334, 118–126.CrossRefGoogle Scholar
  41. Li, C. X., Feng, S. L., Shao, Y., Jiang, L. N., Lu, X. Y., & Hou, X. L. (2007). Effects of arsenic on seed germination and physiological activities of wheat seedlings. Journal of Environmental Sciences, 19, 725–732.CrossRefGoogle Scholar
  42. Liu, D., Islam, E., Li, T., Yang, X., Jin, X., & Mahmooda, Q. (2008a). Comparison of synthetic chelators and low molecular weight organic acids in enhancing phytoextraction of heavy metals by two ecotypes of Sedum alfredii Hance. Journal of Hazardous Materials, 153, 114–122.CrossRefGoogle Scholar
  43. Liu, J. N., Zhoub, Q. X., Suna, T., Mad, L. Q., & Wang, S. (2008b). Growth responses of three ornamental plants to Cd and Cd–Pb stress and their metal accumulation characteristics. Journal of Hazardous Materials, 151, 261–267.CrossRefGoogle Scholar
  44. Liu, J. N., Zhou, Q. X., Sun, T., Ma, L. Q., & Wang, S. (2008c). Identification and chemical enhancement of two ornamental plants for phytoremediation. Bulletin of Environmental Contamination & Toxicology, 80, 260–265.CrossRefGoogle Scholar
  45. Liu, J., Zhou, Q., & Wang, S. (2010). Evaluation of chemical enhancement on phytoremediation effect of Cd-contaminated soils with Calendula officinalis L. International Journal of Phytoremediation, 12, 503–515.CrossRefGoogle Scholar
  46. Mahmood, A., & Malik, R. N. (2014). Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arabian Journal of Chemistry, 7, 91–99.CrossRefGoogle Scholar
  47. Malandrino, M., Abollino, O., Buoso, S., Giacomino, A., La Gioia, C., & Mentasti, E. (2011). Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite. Chemosphere, 82, 169–178.CrossRefGoogle Scholar
  48. Manzanares-Acuña, E., Vega-Carrillo, H.R., Escobar-de León, M.C., Letechipía-de León, C., Guzmán-Enríquez, L.J., Hernández-Dávila, V.M., Salas-Luévano, M.A. (2005). Evaluación de riesgos ambientales por plomo en la población de Vetagrande, Zacatecas. Reporte final UaEN/RI-02-PbVG/INE-02/03081204Febrero 2005. Zacatecas, México: Universidad Autónoma de Zacatecas. URL: http://www.inecc.gob.mx/descargas/sqre/inf_vetagrande_final_1004_e_ine_final.pdf. Consultada: Julio 12, 2015.
  49. Manzanares-Acuña, E., Vega-Carrillo, H. R., Salas-Luévano, M. S., Hernández-Dávila, V. M., Letechipía-de León, C., & Bañuelos-Valenzuela, R. (2006). Niveles de plomo en la población de alto riesgo y su entorno en San Ignacio, Fresnillo, Zacatecas, México. Salud Pública de México, 48, 212–219.CrossRefGoogle Scholar
  50. Mugica-Alvarez, V., Cortés-Jiménez, V., Vaca-Mier, M., & Domínguez-Soria, V. (2015). Phytoremediation of mine tailings using Lolium multiflorum. International Journal of Environmental Science and Development, 6(4), 246–251.CrossRefGoogle Scholar
  51. Muhammad, D., Chen, F., Zhao, J., Zhang, G., & Wu, F. (2009). Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia. International Journal of Phytoremediation, 11, 558–574.CrossRefGoogle Scholar
  52. Mukhopadhyay, S., & Maiti, S. K. (2010). Phytoremediation of metal mine waste. Applied Ecology and Environmental Research, 8(3), 207–222.Google Scholar
  53. Mullaicharam, A. R., Amaresh, N., & Balasubramanian, H. (2014). Phytochemistry and pleiotropic pharmacological properties of Calendula officinalis—a review. Journal of Pharmacognosy and Phytotherapy, 2(4), 1–10.Google Scholar
  54. NMX (2006). Norma Mexicana NMX-AA-132-SCFI-2006 emitida por la Procuraduría Federal de Protección al Ambiente. Soil sampling for metal and semimetal identification and quantification, and sample handling, Mexico. 17 pp. URL: http://legismex.mty.itesm.mx/normas/aa/nmx-aa-132-SCFI-2006.pdf. Retrieved: July 15th, 2015.
  55. NOM (2007). Norma Oficial Mexicana NOM-147-SEMARNAT/SSA1-2004. Que establece criterios para determinar las concentraciones de remediación de suelos contaminados por arsénico, bario, berilio, cadmio, cromo hexavalente, mercurio, níquel, plata, plomo, selenio, talio y/o vanadio. Publicada en el Diario Oficial de la Federación el 2 de Marzo de 2007. URL: http://www.profepa.gob.mx/innovaportal/file/1392/1/nom-147-semarnat_ssa1-2004.pdf. Retrieved: July 15th, 2015.
  56. Oncel, I., Keles, Y., & Ustun, A. S. (2000). Interactive effects of temperature and heavy metal stress on the growth and some biochemical compounds in wheat seedlings. Environmental Pollution, 107, 315–320.CrossRefGoogle Scholar
  57. Park, J., Kim, J. Y., & Kim, K. W. (2012). Phytoremediation of soil contaminated with heavy metals using Brassica napus. Geosystem Engineering, 15(1), 10–18.CrossRefGoogle Scholar
  58. Peralta, J. R., Gardea-Torresdey, J. L., Tiemann, K. J., Gomez, E., Arteaga, S., Rascon, E., & Pearsons, J. G. (2001). Uptake and effect of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bulletin of Environmental Contamination & Toxicology, 66, 727–734.Google Scholar
  59. Pérez-Martínez, I., & Romero, F. M. (2015). Uso de parámetros indirectos para la evaluación de la contaminación de suelos por metales pesados en una zona minera de San Luis Potosí, México. Boletín de la Sociedad Geológica Mexicana, 67(1), 1–12.Google Scholar
  60. Pichtel, J., & Salt, C. A. (1998). Vegetative growth and trace metal accumulation on metalliferous wastes. Journal of Environmental Quality, 27, 618–642.CrossRefGoogle Scholar
  61. Ramirez-Andreotta, M. D., Brusseau, M. L., Artiola, J. F., & Maier, R. M. (2013). A greenhouse and field-based study to determine the accumulation of arsenic in common homegrown vegetables grown in mining-affected soils. Science of the Total Environment, 443, 299–306.CrossRefGoogle Scholar
  62. Ramos-Arroyo, Y. R., & Siebe-Grabach, C. D. (2006). Strategy for the identification of tailing with environmental risk potential in a mining district: case study in the Guanajuato District, México. Revista Mexicana de Ciencias Geológicas, 23(1), 54–74.Google Scholar
  63. Romero, F. M., Armienta, M. A., Gutiérrez, M. E., & Villaseñor, G. (2008). Geological and climatic factors determining hazard and environmental impact of mine tailing. Revista Internacional de Contaminación Ambiental, 24(2), 43–54.Google Scholar
  64. Romih, N., Grabner, B., Lakota, M., & Ribariè-Lasnik, C. (2012). Distribution of Cd, Pb, Zn, Mo, and S in juvenile and mature Brassica napus L. var. napus. Journal of Phytoremediation, 14(3), 282–301.CrossRefGoogle Scholar
  65. Safari-Sinegani, A. A., & Khalilikhah, F. (2011). The effect of application time of mobilising agents on growth and phytoextraction of lead by Brassica napus from a calcareous mine soil. Environmental Chemistry Letters, 9, 259–265.CrossRefGoogle Scholar
  66. Salas-Luévano, M. A., Manzanares-Acuña, E., Letechipía-de León, C., & Vega-Carrillo, H. R. (2009). Tolerant and hyperaccumulators autochthonous plant species from mine tailing disposal sites. Asian Journal of Experimental Sciences, 23(1), 27–32.Google Scholar
  67. Salas-Luévano, M., Manzanares-Acuña, E., Letechipia-de Leon, C., Hernandez-Davila, V., & Vega-Carrillo, H. (2011). Lead concentration in soil from an old mining town. Journal of Radioanalytical and Nuclear Chemistry, 289, 35–39.CrossRefGoogle Scholar
  68. Santiago-Cruz, M. A., Villagrán-Vargas, E., Velázquez-Rodríguez, A. S., Vernon-Carter, E. J., Cruz-Sosa, F., Orozco-Villafuerte, J., & Buendía-González, L. (2014). Exploring the Cr(VI) phytoremediation potential of Cosmos bipinnatus. Water, Air, and Soil Pollution, 225, 1–8.CrossRefGoogle Scholar
  69. Santos-Jallath, J., Castro-Rodríguez, A., Huezo-Casillas, J., & Torres-Bustillos, L. (2012). Arsenic and heavy metals in native plants at tailings impoundments in Queretaro, Mexico. Physics and Chemistry of the Earth, 37–39, 10–17.CrossRefGoogle Scholar
  70. Santos-Santos, E., Yarto-Ramírez, M., Gavilán-García, I., Castro-Díaz, J., Gavilán-García, A., Rosiles, R., Suárez, S., & López-Villegas, T. (2006). Analysis of arsenic, lead and mercury in farming areas with mining contaminated soils at Zacatecas, Mexico. Journal of the Mexican Chemical Society, 50(2), 57–63.Google Scholar
  71. SAS Institute Inc. (2002). The SAS system for windows, ver. 9.0 SAS. North Carolina. EUA: Inc, Carolina.Google Scholar
  72. SEMARNAT (2001). Norma oficial mexicana NOM-021-RECNAT-2000 que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreos y análisis. Diario Oficial de la Nación. México, D.F. p. 73. http://dof.gob.mx/nota_detalle.php?codigo=717582&fecha=31/12/2002. Retrieved: October 28th, 2015.
  73. SEMARNAT (2008). Secretaría del Medio Ambiente y Recursos Naturales. Programa Nacional para la Prevención y Gestión Integral de los Residuos Sólidos 2009–2012. PNPGIRS. p. 10. http://biogas-iclei.pacmun.org.mx/wp-content/uploads/2013/04/l-PNPGIR.pdf. Retrieved: July 12th, 2015.
  74. Shoemakerl, C. A., & Carlson, W. H. (1990). pH affects seed germination of eight bedding plant species. Hortscience, 25(7), 762–764.Google Scholar
  75. Shri, M., Kumar, S., Chakrabarty, D., Trivedi, P. K., Mallick, S., Misra, P., Shukla, D., Mishra, S., Srivastava, S., Tripathi, R. D., & Tuli, R. (2009). Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicology and Environmental Safety, 72, 1102–1110.CrossRefGoogle Scholar
  76. Solhi, M., Shareatmadari, H., & Hajabbasi, M. A. (2005). Lead and zinc extraction potential of two common crop plants, Helianthus annuus and Brassica napus. Water, Air, and Soil Pollution, 167(1–4), 59–71.CrossRefGoogle Scholar
  77. USEPA (2007). Environmental Protection Agency. Method 6010C. Inductively coupled plasma-atomic emission spectrometry. URL: http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/6010c.pdf. Retrieved: July 12th, 2015.
  78. Usman, A. R. A., & Mohamed, H. M. (2009). Effect of microbial inoculation and EDTA on the uptake and translocation of heavy metal by corn and sunflower. Chemosphere, 76, 893–899.CrossRefGoogle Scholar
  79. Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method and a proposed modification of the chromic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.CrossRefGoogle Scholar
  80. Wang, C., Harbottle, D., Liu, Q., & Xu, Z. (2014). Current state of fine mineral tailings treatment: a critical review on theory and practice. Minerals Engineering, 58, 113–131.CrossRefGoogle Scholar
  81. Wong, M. H. (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50, 775–780.CrossRefGoogle Scholar
  82. Yingli, Y., Xueling, W., Jin, L., Jia, Y., Wenrui, W., & Ruxia, S. (2010). Lead-induced phytotoxicity mechanism involved in seed germination and seedling growth of wheat (Triticum aestivum L.). Ecotoxicology and Environmental Safety, 73(8), 1982–1987.CrossRefGoogle Scholar
  83. Zaier, H., Ghnaya, T., Rejeba, K. B., Lakhdar, A., Rejeb, S., & Jemal, F. (2010). Effects of EDTA on phytoextraction of heavy metals (Zn, Mn and Pb) from sludge-amended soil with Brassica napus. Bioresource Technology, 101(11), 3978–3983.CrossRefGoogle Scholar
  84. Zhao, H., Xia, B., Fan, C., Zhao, P., & Shen, S. (2012). Human health risk from soil heavy metal contamination under different land uses near Dabaoshan Mine, Southern China. Science of the Total Environment, 417–418, 45–54.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Eduardo González-Valdez
    • 1
    • 2
  • Alejandro Alarcón
    • 1
    Email author
  • Ronald Ferrera-Cerrato
    • 1
  • Héctor René Vega-Carrillo
    • 3
  • María Maldonado-Vega
    • 4
  • Miguel Ángel Salas-Luévano
    • 5
  1. 1.Área de Microbiología, Postgrado de EdafologíaColegio de PostgraduadosMontecilloMéxico
  2. 2.Universidad Michoacana de San Nicolás de Hidalgo, Facultad de Químico FarmacobiologíaMoreliaMéxico
  3. 3.Unidad Académica de Estudios NuclearesUniversidad Autónoma de ZacatecasZacatecasMéxico
  4. 4.Hospital Regional de Alta Especialidad del Bajío, Dirección de Planeación, Enseñanza e InvestigaciónLeónMexico
  5. 5.Unidad Académica de AgronomíaUniversidad Autónoma de ZacatecasZacatecasMéxico

Personalised recommendations