Skip to main content
Log in

Experimental Methodology to Assess Retention of Heavy Metals Using Soils from Municipal Waste Landfills

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Municipal landfill soils are not able to retain heavy metals indefinitely, and these metals can migrate into the groundwater. Environmental contamination induced by toxic metals creates a societal health risk. The objective of this work is to study the ability of landfill soil to retain metals (Pb, Cd, Cu, Fe and Zn). The soil came from the municipal solid waste dump of the City of Yamoussoukro (Côte d’Ivoire). Operating parameters such as thickness of soil, metal concentration and filtered volume were investigated. A factorial experimental design was used to determine which parameters influence the metal retention rate. Thickness of soil and metal concentration were the most important factors influencing metal retention. Using a 23 factorial matrix, the best performances for metal retention (99.8–100 % removal) were obtained by selecting a thickness of soil of 2.0 cm, an initial metal concentration of 50 mg L−1 and 200 mL of metallic solution. The optimal experimental conditions for metal retention were then investigated using the Excel Solver program. Between 98.9 and 99.9 % of the metals were retained in subsequent experiments using these optimal conditions (soil thickness ranging between 10 and 14 cm and metal concentration of up to 300 mg L−1 in 400 mL of metallic solution).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adriano, D., Wenzel, W., Vangronsveld, J., & Bolan, N. S. (2004). Role of assisted natural remediation in environmental cleanup. Geoderma, 122, 121–142.

    Article  CAS  Google Scholar 

  • Aloueimine, S. O. (2006). Methodology for characterization of waste in Nouakchott (Mauritania): contribution to the waste management tools and decision support. PhD Dissertation, University of Limoges.

  • Assidjo, E., Yao, B., Akou, E., & Ado, G. (2005). Optimisation of the treatment conditions of cocoa butter in order to reduce non‐quality. Journal of chemometrics, 19, 543–548.

    Article  CAS  Google Scholar 

  • Bozkurt, S., Moreno, L., & Neretnieks, I. (2000). Long-term processes in waste deposits. Science of the total environment, 250, 101–121.

    Article  CAS  Google Scholar 

  • Chaperon, S., & Sauvé, S. (2008). Toxicity interactions of cadmium, copper, and lead on soil urease and dehydrogenase activity in relation to chemical speciation. Ecotoxicology and Environmental Safety, 70, 1–9.

    Article  CAS  Google Scholar 

  • Chatain, V. (2004). Characterization of the potential mobilization of arsenic and other inorganic constituents in soils from a gold mining site. PhD Dissertation, National Institute of Applied Science of Lyon.

  • De Matos, A., Fontes, M., Da Costa, L., & Martinez, M. (2001). Mobility of heavy metals as related to soil chemical and mineralogical characteristics of Brazilian soils. Environmental Pollution, 111, 429–435.

    Article  Google Scholar 

  • Drogui, P., Mercier, G., & Blais, J.-F. (2005). Bioproduction of ferric sulfate used during heavy metals removal from sewage sludge. Journal of environmental quality, 34, 816–824.

    Article  CAS  Google Scholar 

  • Feinberg, M. (1996). La validation des méthodes d’analyse. Une approche chimiométrique de l’assurance qualité au laboratoire. Ed. Masson, 457 p.

  • Goupy, J. (2006). Les plans d’expériences. Revue MODULAD. Tutoriel, 34, 74–116.

    Google Scholar 

  • Guo, G., Yuan, T., Wang, W., Li, D., Cheng, J., Gao, Y., & Zhou, P. (2011). Bioavailability, mobility, and toxicity of Cu in soils around the Dexing Cu mine in China. Environmental geochemistry and health, 33, 217–224.

    Article  CAS  Google Scholar 

  • Kouamé, I. K., Gomé, D. L., Savané, I., Kouassi, E. A., Koffi, K., Goula, B. T. A., & Diallo, M. (2006). Mobilité relative des métaux lourds issus de la décharge d’Akouédo et risque de contamination de la nappe du Continental Terminal (Abidjan-Côte d’Ivoire). Afrique Science, 02(1), 39–56.

  • Kouassi, A. E., Ahouassi, K. E., Koffi, Y. B., Kouamé, I. K., Soro, N., & Biémi, J. (2014). Caractérisation physicochimique du luixiviat d’une décharge de l’Afrique de l’Ouest: cas de la décharge d’Akouédo (Abidjan-Côte d’Ivoire). Larhyss Journal, 19, 63–74.

  • Lu, Y., Yin, W., Huang, L., Zhang, G., & Zhao, Y. (2011). Assessment of bioaccessibility and exposure risk of arsenic and lead in urban soils of Guangzhou City, China. Environmental geochemistry and health, 33, 93–102.

    Article  CAS  Google Scholar 

  • Mercier, G., Duchesne, J., & Carles-Gibergues, A. (2002). A new in vitro test to simulate gastric absorption of copper, lead, tin and zinc from polluted soils Mise au Point d’un Test In Vitro Simulant le Suc Gastrique pour Dépister les Sols Contaminés par le Cuivre, le Plomb, l’Étain et le Zinc. Environmental technology, 23, 121–133.

    Article  CAS  Google Scholar 

  • Pereira, B. & Sonnet, P. (2007). La contamination diffuse des sols par les éléments traces métalliques en région wallonne. Etudes-Expertises. Etat de l’environnement wollon. UCL, 27 p.

  • Robinson, G. W. (1949). Soils. Their origin, constitution and classification. London: Thomas Murby and Co, N.Y.J. Wiley and Sons Inc., 573 p.

  • Rouiller, J., Souchier, B., Bruckert, S., Feller, C., Toutain, F., & Verdy, J. C. (1994). Méthodes d’analyses des sols. In M. Bonneau & B. Souchier (Eds.), Pédologie: constituants et propriétés du sol. Tome II (pp. 619–952). Paris: Masson.

    Google Scholar 

  • USEPA. (1997). Clean up the nation’s waste sites: markets and technology trends. Washington, DC: EPA/542/R/96/005, U.S. Environmental Protection Agency.

    Google Scholar 

  • Venkateswaran, P., Vellaichamy, S., & Palanivelu, K. (2007). Speciation of heavy metals in electroplating industry sludge and wastewater residue using inductively coupled plasma. International Journal of Environmental Science & Technology, 4, 497–504.

    Article  CAS  Google Scholar 

  • Yao, B., Assidjo, E., Gueu, S., & Ado, G. (2005). Study of hibiscus esculentus mucilage coagulation-floculation activity. Journal of Applied Sciences and Environmental Management, 9(1), 173–176.

    Google Scholar 

  • Yatribi, A., & Nejmeddine, A. (2000). Heavy metals fractionnation and mobility in soil downstream of tannery wastewaters. France: Revue des Sciences de l’Eau.

    Google Scholar 

  • Yobouet, Y., Adouby, K., Trokourey, A., & Yao, B. (2010). Cadmium, copper, lead and zinc speciation in contaminated soils. International Journal of Engineering Science and Technology, 2, 802–812.

    Google Scholar 

  • Yobouet, Y. A., Adouby, K., Trokourey, A., & Yao, B. (2013). Soils pollution in some metals in a solid waste dump in Yamoussoukro, Cote d’Ivoire. International Journal of Current Research, 5(1), 112–118.

    CAS  Google Scholar 

Download references

Acknowledgments

Sincere thanks are extended to the Association of Universities and Colleges of Canada and International Development Research Centre for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Drogui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table SM1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yobouet, Y.A., Adouby, K. & Drogui, P. Experimental Methodology to Assess Retention of Heavy Metals Using Soils from Municipal Waste Landfills. Water Air Soil Pollut 227, 37 (2016). https://doi.org/10.1007/s11270-015-2706-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2706-x

Keywords

Navigation