Abstract
The global sugarcane production is about 1.91 billion tons annually and is concentrated in tropical regions, particularly in developing nations in Latin America and Asia. According to the UN Food and Agricultural Organization (FAO), there are over 100 countries producing sugarcane today. The increase in sugarcane production implies a proportional increase in sugar industry wastes. As a consequence of such increasing trend, sugar industries are facing severe environmental problems due to the lack of sustainable solutions for their waste management. Therefore, immediate attention is required to find a proper way of management to deal with sugar industry wastes and effluent in order to minimize environmental pollution and associated health risks. In this paper, different sources of solid and liquid wastes from sugarcane agriculture and associated sugar agro-industries are reviewed and valorization approaches of these different wastes are discussed. Some of the important resource recovery options from sugar industry wastes, which have been discussed in this review, include ethanol production, recovery of chemicals, use of bagasse and bagasse fly ash as adsorbents in water treatment and building materials. Technologies associated with the treatment of wastewater from sugar industries and efficient ways of utilization of this treated water in agriculture with special attention to measurement of crop water use efficiency are reviewed in view of our own research activities carried out in the past.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
AARRO (1996). Environmental Degradation and its implication on Rural Development, Report of the International Workshop. Cairo.
Adani, F., Genevini, P. L., & Tambone, F. (1995). A new index of organic matter stability. Compostites Science & Utilization, 3, 25–37.
Agrawal, K. M., Barve, B. R., & Khan, S. S. (2013). Biogas from pressmud, IOSR journal of mechanical and civil engineering (pp. 37–41). Jaysingpur: Dr. J.J.Magdum College of Engineering.
Ali, I., Al-Othman, Z., Alwarthan, A., Asim, M., & Khan, T. (2014). Removal of arsenic species from water by batch and column operations on bagasse fly ash. Environmental Science & Pollution Research, 21, 3218–3229.
Allen, R. G., Pereira, L. S., Howell, T. A., & Jensen, M. E. (2011). Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agricultural Water Management, 98, 899–920.
Alonso Pippo, W., Garzone, P., & Cornacchia, G. (2007). Agro-industry sugarcane residues disposal: the trends of their conversion into energy carriers in Cuba. Waste Management, 27, 869–885.
Asaithambi, P., & Matheswaran, M. (2015). Electrochemical treatment of simulated sugar industrial effluent: optimization and modeling using a response surface methodology. Arabian Journal of Chemistry. doi:10.1016/j.arabjc.2011.1010.1004.
Badshah, M., Lam, D. M., Liu, J., & Mattiasson, B. (2012). Use of an automatic methane potential test system for evaluating the biomethane potential of sugarcane bagasse after different treatments. Bioresource Technology, 114, 262–269.
Bahurudeen, A., Marckson, A. V., Kishore, A., & Santhanam, M. (2014). Development of sugarcane bagasse ash based Portland pozzolana cement and evaluation of compatibility with superplasticizers. Construction and Building Materials, 68, 465–475.
Balakrishnan, M., & Batra, V. S. (2011). Valorization of solid waste in sugar factories with possible applications in India : a review. Journal of Environmental Management, 92, 2886–2891.
Baldocchi, D. (2014). Measuring fluxes of trace gases and energy between ecosystems and the atmosphere—the state and future of the eddy covariance method. Global Change Biology, 20, 3600–3609.
Bansal, S., & Kapoor, K. K. (2000). Vermicomposting of crop residues and cattle dung with Eisenia foetida. Bioresource Technology, 73, 95–98.
Baruah, A. K., Sharma, R. N., & Borah, G. C. (1993). Impact of sugar mill and distillery effluents on water quality of river Gelabil Assam. Indian Journal of Environmental Health, 35, 288–293.
Basanta, R., Garcia Delgado, M., & Cervantes, J. (2007). Sostenibilidad del reciclaje de residuos de la agroindustria azucarera. Una Revisiόn Ciencia y Tecnologı’a Alimentaria, 5, 293–305.
Billore, S. K., Singh, N., Ram, H. K., Sharma, J. K., Singh, V. P., Nelson, R. M., & Dass, P. (2001). Treatment of a molasses based distillery effluent in a constructed wetland in central India. Water Science and Technology, 44, 441–448.
Cancado, J. E. D., Saldiva, P. H. N., Pereira, L. A. A., Lara, L. B. L. S., Artaxo, P., Martinelli, L. A., Arbex, M. A., Zanobetti, A., & Braga, A. L. F. (2006). The impact of sugar cane—burning emissions on the respiratory system of children and the elderly. Environmental Health Perspectives, 114, 725–729.
Carmo, J. B. D., Filoso, S., Zotelli, L. C., de Sousa Neto, E. R., Pitombo, L. M., Duarte-Neto, P. J., Vargas, V. P., Andrade, C. A., Gava, G. J. C., Rossetto, R., Cantarella, H., Neto, A. E., & Martinelli, L. A. (2013). Infield greenhouse gas emissions from sugarcane soils in Brazil: effects from synthetic and organic fertilizer application and crop trash accumulation. GCB Bioenergy, 5, 267–280.
Carrier, M., Hardie, A. G., Uras, Ü., Görgens, J., & Knoetze, J. (2012). Production of char from vacuum pyrolysis of South-African sugar cane bagasse and its characterization as activated carbon and biochar. Journal of Analytical and Applied Pyrolysis, 96, 24–32.
Carvalho, W., Silva, S. S., Santos, J. C., & Converti, A. (2003). Xylitol production by Ca-alginate entrapped cells: comparison of different fermentation systems. Enzyme and Microbial Technology, 32, 553–559.
Carvalho, W., Santos, J. C., Canilha, L., Silva, S. S., Perego, P., & Converti, A. (2005). Xylitol production from sugarcane bagasse hydrolysate: metabolic behaviour of Candida guilliermondii cells entrapped in Ca-alginate. Biochemical Engineering Journal, 25, 25–31.
Chaudhary, R., & Sahu, O. P. (2013). Treatment of sugar waste water by electrocoagulation. Journal of Atmospheric Pollution, 1, 5–7.
Chen, J. C. P. & Chou, C. C. (1993). Cane sugar handbook: a manual for cane sugar manufacturers and their chemists.Wiley.
Chi, M.-C. (2012). Effects of sugar cane bagasse ash as a cement replacement on properties of mortars. Science and Engineering of Composite Materials, 19, 279–285.
Chusilp, N., Jaturapitakkul, C., & Kiattikomol, K. (2009). Utilization of bagasse ash as a pozzolanic material in concrete. Construction and Building Materials, 23, 3352–3358.
Cifuentes, R., de León, R., Porres, C., & Rolz, C. (2013). Windrow composting of waste sugar cane and press mud mixtures. Sugar Technology, 15, 406–411.
Cordeiro, G. C., Toledo Filho, R. D., Tavares, L. M., & Fairbairn, E. M. R. (2008). Pozzolanic activity and filler effect of sugar cane bagasse ash in Portland cement and lime mortars. Cement and Concrete Composites, 30, 410–418.
Cordeiro, G. C., Toledo Filho, R. D., & Fairbairn, E. M. R. (2009a). Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash. Construction and Building Materials, 23, 3301–3303.
Cordeiro, G. C., Toledo Filho, R. D., Tavares, L. M., & Fairbairn, E. D. M. R. (2009b). Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cement and Concrete Research, 39, 110–115.
Crutzen, P. J., & Andreae, M. O. (1990). Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science, New Series, 250, 1669–1678.
Crutzen, P. J., Mosier, A. R., Smith, K. A., & Winiwarter, W. (2008). N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmospheric Chemistry and Physics, 8, 389–395.
Damodharan, U., & Reddy, M. V. (2012). Impact of sugar industrial treated effluent on the growth factor in sugarcane––Cuddalore, India. Journal of Sustainable Bioenergy System, 2, 43–48.
Dasgupta, A. (1983). Anaerobic digestion of solid wastes of sugar cane industry. Coral Gables, FL: University of Miami.
Dawson, L., & Boopathy, R. (2007). Use of post-harvest sugarcane residue for ethanol production. Bioresource Technology, 98, 1695–1699.
de Andrade Landell, M. G., Scarpari, M. S., Xavier, M. A., dos Anjos, I. A., Baptista, A. S., de Aguiar, C. L., da Silva, D. N., Bidóia, M. A. P., Brancalião, S. R., Bressiani, J. A., de Campos, M. F., Miguel, P. E. M., da Silva, T. N., da Silva, V. H. P., Anjos, L. O. S., & Ogata, B. H. (2013). Residual biomass potential of commercial and pre-commercial sugarcane cultivars. Scientia Agricola, 270, 299–304.
Dos Santos, V. G., De Souza, J. T. M., Tarley, C. T., Caetano, J., & Dragunski, D. (2011). Copper ions adsorption from aqueous medium using the biosorbent sugarcane bagasse in natura and chemically modified. Water, Air, & Soil Pollution, 216, 351–359.
Dourado-Neto, D., Timm, C., Oliveira, J. C. M., Reichardt, K., Bacchi, O. O. S., Tominaga, T. T., & Cássaro, F. A. M. (1999). State-space approach for the analysis of soil water content and temperature in a sugarcane crop. Scientia Agricola, 56, 1215–1221.
Efe, S. I. (2008). Spatial distribution of particulate air pollution in Nigerian cities: implications for human health. Journal of Environmental Health Research, 7, 102–109.
Eykelbosh, A. J., Johnson, M. S., Queiroz, E. S. D., Dalmagro, H. J., & Couto, E. G. (2014). Biochar from sugarcane filtercake reduces soil CO2 emissions relative to raw residue and improves water retention and nutrient availability in a highly-weathered tropical soil. PLoS ONE, 9, e98523.
Fairbairn, E. M. R., Americano, B. B., Cordeiro, G. C., Paula, T. P., Toledo Filho, R. D., & Silvoso, M. M. (2010). Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits. Journal of Environmental Management, 91, 1864–1871.
Fakayode, P. K. (2005). Alteration in physico-chemical characteristics of soil irrigated with sugar mill effluent. Journal of Environmental Biology, 12, 103–109.
FAOSTAT (2011). Food and Agriculture Organization of the United Nations.
FAOSTAT (2015). Food and Agriculture Organization of the United Nations.
Faria, K. C. P., Gurgel, R. F., & Holanda, J. N. F. (2012). Recycling of sugarcane bagasse ash waste in the production of clay bricks. Journal of Environmental Management, 101, 7–12.
Frías, M., Villar, E., & Savastano, H. (2011). Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture. Cement and Concrete Composites, 33, 490–496.
Fungaro, D. A., Reis, T. V. S., Logli, M. A., & Oliveira, N. A. (2014). Synthesis and characterization of zeolitic material derived from sugarcane straw ash. American Journal of Environmental Protection, 2, 16–21.
Gálvez, L. O. (2000). Diversified productions in sugarcane agro-industry, Havana/Cuba, ICIDCA.
Ganesan, K., Rajagopal, K., & Thangavel, K. (2007). Evaluation of bagasse ash as supplementary cementitious material. Cement and Concrete Composites, 29, 515–524.
Ghosh, M., Chattopadhyay, G. N., & Baral, K. (1999). Transformation of phosphorus during vermicomposting. Bioresource Technology, 69, 149–154.
Gopal, A. R., & Kammen, D. M. (2009). Molasses for ethanol: the economic and environmental impacts of a new pathway for the lifecycle greenhouse gas analysis of sugarcane ethanol. Environmental Research Letters, 4, 044005.
Gullett, B. K., Touati, A., Huwe, J., & Hakk, H. (2006). PCDD and PCDF emissions from simulated sugarcane field burning. Environmental Science & Technology, 40, 6228–6234.
Gunkel, G., Kosmol, J., Sobral, M., Rohn, H., Montenegro, S., & Aureliano, J. (2007). Sugar cane industry as a source of water pollution—case study on the situation in Ipojuca River, Pernambuco, Brazil. Water, Air, and Soil Pollution, 180, 261–269.
Gupta, V. K., & Ali, I. (2000). Utilisation of bagasse fly ash (a sugar industry waste) for the removal of copper and zinc from wastewater. Separation and Purification Technology, 18, 131–140.
Gupta, V. K., & Ali, I. (2001). Removal of DDD and DDE from wastewater using bagasse fly ash, a sugar industry waste. Water Research, 35, 33–40.
Gupta, V. K., & Ali, I. (2004). Removal of lead and chromium from wastewater using bagasse fly ash—a sugar industry waste. Journal of Colloid and Interface Science, 271, 321–328.
Gupta, V. K., & Sharma, S. (2003). Removal of zinc from aqueous solutions using bagasse fly ash—a low cost adsorbent. Industrial & Engineering Chemistry Research, 42, 6619–6624.
Gupta, V. K., Mohan, D., & Sharma, S. (1998a). >Removal of lead from wastewater using bagasse fly ash—a sugar industry waste material. Separation Science and Technology, 33, 1331–1343.
Gupta, V. K., Sharma, S., Yadav, I. S., & Mohan, D. (1998b). Utilization of bagasse fly ash generated in the sugar industry for the removal and recovery of phenol and p-nitrophenol from wastewater. Journal of Chemical Technology & Biotechnology, 71, 180–186.
Gupta, V. K., Mohan, D., Sharma, S., & Sharma, M. (2000). Removal of basic dyes (Rhodamine B and Methylene blue) from aqueous solutions using bagasse fly ash. Separation Science and Technology, 35, 2097–2113.
Gupta, V. K., Jain, C. K., Ali, I., Chandra, S., & Agarwal, S. (2002). Removal of lindane and malathion from wastewater using bagasse fly ash—a sugar industry waste. Water Research, 36, 2483–2490.
Gupta, V. K., Jain, C. K., Ali, I., Sharma, M., & Saini, V. K. (2003). Removal of cadmium and nickel from wastewater using bagasse fly ash—a sugar industry waste. Water Research, 37, 4038–4044.
Güven, G., Perendeci, A., & Tanyolaç, A. (2009). Electrochemical treatment of simulated beet sugar factory wastewater. Chemical Engineering Journal, 151, 149–159.
Hall, D., Wu, C.-Y., Hsu, Y.-M., Stormer, J., Engling, G., Capeto, K., Wang, J., Brown, S., Li, H.-W., & Yu, K.-M. (2012). PAHs, carbonyls, VOCs and PM2.5 emission factors for pre-harvest burning of Florida sugarcane. Atmospheric Environment, 55, 164–172.
Hampannavar, U. S., & Shivayogimath, C. B. (2010). Anaerobic treatment of sugar industry wastewater by upflow anaerobic sludge blanket reactor at ambient temperature. International Journal of Environmental Sciences, 1, 631–639.
Hiwarkar, A. D., Srivastava, V. C., & Mall, I. D. (2015). Comparative studies on adsorptive removal of indole by granular activated carbon and bagasse fly ash. Environmental Progress & Sustainable Energy, 34, 492–503.
Hondo, H., & Kikuchi, K. (2014). The effect of local biomass projects on energy balance and GHG emission: a life cycle approach. International Journal of Green Energy, 12, 160–167.
Ingaramo, A., Heluane, H., Colombo, M., & Cesca, M. (2009). Water and wastewater eco-efficiency indicators for the sugar cane industry. Journal of Cleaner Production, 17, 487–495.
Inyang, M., Gao, B., Pullammanappallil, P., Ding, W., & Zimmerman, A. R. (2010). Biochar from anaerobically digested sugarcane bagasse. Bioresource Technology, 101, 8868–8872.
Inyang, M., Gao, B., Ding, W., Pullammanappallil, P., Zimmerman, A. R., & Cao, X. (2011). Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse. Separation Science and Technology, 46, 1950–1956.
Jambhekar, H. A. (1992). Use of earthworm as a potential source to decompose organic waste, in Proc. Natl. Sem. On organic farming (pp. 52–53). Pune: MPKV, College of Agriculture.
Janjaturaphan, S., & Wansom, S. (2010). Pozzolanic activity of industrial sugar cane bagasse ash. Suranaree Journal of Science Technology, 17, 349–357.
Jiménez, A. M., Borja, R., & Martín, A. (2004). A comparative kinetic evaluation of the anaerobic digestion of untreated molasses and molasses previously fermented with Penicillium decumbens in batch reactors. Biochemical Engineering Journal, 18, 121–132.
Jiménez-Quero, V. G., León-Martínez, F. M., Montes-García, P., Gaona-Tiburcio, C., & Chacón-Nava, J. G. (2013). Influence of sugar-cane bagasse ash and fly ash on the rheological behavior of cement pastes and mortars. Construction and Building Materials, 40, 691–701.
Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., & Ritchie, J. T. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18, 235–265.
Jorapur, R., & Rajvanshi, A. K. (1997). Sugarcane leaf-bagasse gasifiers for industrial heating applications. Biomass and Bioenergy, 13, 141–146.
Kesari, K. K., & Behari, J. (2008). Ultrasonic impact on bacterial population in sewage sample. International Journal of Environment and Waste Management, 2, 233–244.
Kesari, K. K., Kumar, S., Verma, H. N., & Behari, J. (2011a). Influence of ultrasonic treatment in sewage sludge. Hydrology: Current Research, 2, 115.
Kesari, K. K., Verma, H. N., & Behari, J. (2011b). Physical methods in wastewater treatment. International Journal of Environmental Technology and Management, 14, 43–66.
Kumar, A., Prasad, B., & Mishra, I. M. (2014). Adsorption of acrylonitrile from aqueous solution using bagasse fly ash. Journal of Water Process Engineering, 2, 129–133.
Kumaraguru, K., Rengasamy, M., Kumar, E. T. P., & Venkadesh, D. (2014). Factors affecting printing quality of paper from bagasse pulp. International Journal of ChemTech Research, 6, 2783–2787.
Kuo, C.-H., & Lee, C.-K. (2009). Enhanced enzymatic hydrolysis of sugarcane bagasse by N-methylmorpholine-N-oxide pretreatment. Bioresource Technology, 100, 866–871.
Kushwaha, J. P. (2015). A review on sugar industry wastewater: sources, treatment technologies, and reuse. Desalination and Water Treatment, 53, 309–318.
Kushwaha, J. P., Srivastava, V. C., & Mall, I. D. (2010). Treatment of dairy wastewater by commercial activated carbon and bagasse fly ash: parametric, kinetic and equilibrium modelling, disposal studies. Bioresource Technology, 101, 3474–3483.
Lataye, D. H., Mishra, I. M., & Mall, I. D. (2006). Removal of pyridine from aqueous solution by adsorption on bagasse fly ash. Industrial & Engineering Chemistry Research, 45, 3934–3943.
Lataye, D. H., Mishra, I. M., & Mall, I. D. (2008a). Adsorption of 2-picoline onto bagasse fly ash from aqueous solution. Chemical Engineering Journal, 138, 35–46.
Lataye, D. H., Mishra, I. M., & Mall, I. D. (2008b). Multicomponent sorptive removal of toxics pyridine, 2-Picoline, and 4-picoline from aqueous solution by bagasse fly ash: optimization of process parameters. Industrial & Engineering Chemistry Research, 47, 5629–5635.
Law, B. E., Falge, E., Gu, L., Baldocchi, D. D., Bakwin, P., Berbigier, P., Davis, K., Dolman, A. J., Falk, M., Fuentes, J. D., Goldstein, A., Granier, A., Grelle, A., Hollinger, D., Janssens, I. A., Jarvis, P., Jensen, N. O., Katul, G., Mahli, Y., Matteucci, G., Meyers, T., Monson, R., Munger, W., Oechel, W., Olson, R., Pilegaard, K., Paw, U. K. T., Thorgeirsson, H., Valentini, R., Verma, S., Vesala, T., Wilson, K., & Wofsy, S. (2002). Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology, 113, 97–120.
Lee, K. E. (1985). Earthworms—their ecology and relationship with soil and land use. Sydney: Academic.
Li, Y., & Yang, L. (2015). Sugarcane agriculture and sugar industry in China. Sugar Technology, 17, 1–8.
López González, L. M., Pereda Reyes, I., Dewulf, J., Budde, J., Heiermann, M., & Vervaeren, H. (2014). Effect of liquid hot water pre-treatment on sugarcane press mud methane yield. Bioresource Technology, 169, 284–290.
Madurwar, M., Mandavgane, S., & Ralegaonkar, R. (2014). Development and feasibility analysis of bagasse ash bricks. Journal of Energy Engineering, 141, 04014022.
Mahendran, R., Ramli, N. H., & AbdulRahman, H. N. (2014). Study the effect of using ultrasonic membrane anaerobic system in treating sugarcane waste and methane gas production. International Journal Research Engineering Technology, 3, 299–303.
Mall, I. D., Srivastava, V. C., Agarwal, N. K., & Mishra, I. M. (2005). Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 264, 17–28.
Mall, I. D., Srivastava, V. C., & Agarwal, N. K. (2006). Removal of orange-G and methyl violet dyes by adsorption onto bagasse fly ash—kinetic study and equilibrium isotherm analyses. Dyes and Pigments, 69, 210–223.
Mane, V. S., Mall, I. D., & Srivastava, V. C. (2007). Use of bagasse fly ash as an adsorbent for the removal of brilliant green dye from aqueous solution. Dyes and Pigments, 73, 269–278.
Martinelli, L. A., & Filoso, S. (2008). Expansion of sugarcane ethanol production in Brazil: environmental and social challenges. Ecological Applications, 18, 885–898.
Martirena Hernández, J. F., Middendorf, B., Gehrke, M., & Budelmann, H. (1998). Use of wastes of the sugar industry as pozzolana in lime-pozzolana binders: study of the reaction. Cement and Concrete Research, 28, 1525–1536.
Mathew, S., & Abraham, T. E. (2005). Studies on the production of feruloyl esterase from cereal brans and sugar cane bagasse by microbial fermentation. Enzyme and Microbial Technology, 36, 565–570.
Mello, F. F. C., Cerri, C. E. P., Davies, C. A., Holbrook, N. M., Paustian, K., Maia, S. M. F., Galdos, M. V., Bernoux, M., & Cerri, C. C. (2014). Payback time for soil carbon and sugar-cane ethanol. Nature Climate Change, 4, 605–609.
Mitter, E., dos Santos, G., de Almeida, É., Morão, L., Rodrigues, H., & Corso, C. (2012). Analysis of acid alizarin violet N Dye removal using sugarcane bagasse as adsorbent. Water, Air, & Soil Pollution, 223, 765–770.
Moisés, M. P., da Silva, C. T. P., Meneguin, J. G., Girotto, E. M., & Radovanovic, E. (2013). Synthesis of zeolite NaA from sugarcane bagasse ash. Materials Letters, 108, 243–246.
Mubarik, S., Saeed, A., Athar, M. M., & Iqbal, M. (2015). Characterization and mechanism of the adsorptive removal of 2,4,6-trichlorophenol by biochar prepared from sugarcane bagasse. Journal of Industrial and Engineering Chemistry. doi:10.1016/j.jiec.2015.1009.1029.
Mussatto, S. I., Dragone, G., Rocha, G. J. M., & Roberto, I. C. (2006). Optimum operating conditions for brewer’s spent grain soda pulping. Carbohydrate Polymers, 64, 22–28.
Muthusamy, P., Murugan, S., & Smitha, M. (2012). Removal of nickel ion from industrial waste water using maize cob. ISCA Journal of Biological Sciences, 1, 7–11.
Nagavallemma, K. P., Wani, S. P., Lacroix, S., Padmaja, V. V., Vineela, C., Babu, R. M., & Sahrawat, K. L. (2006). Vermicomposting: recycling wastes into valuable organic fertilizer. SAT eJournal, 2, 1–16.
Nemerow, N. L., & Agardy, F. J. (1998). Strategies of industrial and hazardous waste management. USA: International Thomson publishing company.
Noonpui, S., Thiravetyan, P., Nakbanpote, W., & Netpradit, S. (2010). Color removal from water-based ink wastewater by bagasse fly ash, sawdust fly ash and activated carbon. Chemical Engineering Journal, 162, 503–508.
Nour, A. H., & Zainal, Z. (2014). Membrane fouling control by ultrasonic membrane anaerobic system (UMAS) to produce methane gas. International Journal of Engineering Science Research Technology, 3, 487–497.
Oglesby, R. J., Marshall, S., & Taylor, J. A. (1999). The climatic effects of biomass burning: investigations with a global climate model. Environmental Modelling & Software, 14, 253–259.
Oliveira, J. C. M. D., Reichardt, K., Bacchi, O. O. S., Timm, L. C., Dourado-Neto, D., Trivelin, P. C. O., Tominaga, T. T., Navarro, R. C., Piccolo, M. C., & Cássaro, F. A. M. (2000). Nitrogen dynamics in a soil-sugar cane system. Scientia Agricola, 57, 467–472.
Ozoh, P. E., & Oladimeji, A. A. (1984). Effects of Nigeria dyestuff effluent on germination latency, growth, and gross growth of Zea mays. Bulletin of Environmental Contamination and Toxicology, 33, 215–219.
Pande, Y. N. (2005). Impact of distillery and sugar mill effluents on hydrobiology of the Paravathi lake. Ecology, Environment and Conservation Paper, 1, 39–42.
Partha, N., & Sivasubramanian, V. (2006). Recovery of chemicals from pressmud—a sugar industry waste. Indian Chemical Engeneerig, A, 48, 160–163.
Pawar, N. J., Pondhe, G. M., & Patil, S. F. (1998). Groundwater pollution due to sugar-mill effluent, at Sonai, Maharashtra, India. Environmental Geology, 34, 151–158.
Payá, J., Monzó, J., Borrachero, M. V., Díaz-Pinzón, L., & Ordóñez, L. M. (2002). Sugar-cane bagasse ash (SCBA): studies on its properties for reusing in concrete production. Journal of Chemical Technology & Biotechnology, 77, 321–325.
Peña, M., Coca, M., González, G., Rioja, R., & García, M. T. (2003). Chemical oxidation of wastewater from molasses fermentation with ozone. Chemosphere, 51, 893–900.
Pereira Netto, A. D., Cunha, I. F., & Krauss, T. M. (2004). Persistence of polycyclic aromatic hydrocarbons in the soil of a burned area for agricultural purposes in Brazil. Bulletin of Environmental Contamination and Toxicology, 73, 1072–1077.
Pérez, R. (1995). Molasses. In: Tropical feeds and feeding systems, first FAO electronic conference.
Petit, A. (2014). Application of vacuum belt press filters for cane mud filtration and performance comparison with rotary filters. Sugar Industry-Zuckerindustrie, 139, 298–301.
Poopak, S. & Reza, A. R. (2012). Environmental benefit of using bagasse in paper production—a case study of LCA in Iran, INTECH.
Pope, C. A. R., Bates, D. V., & Raizenne, M. E. (1995). Health effects of particulate air pollution: time for reassessment? Environmental Health Perspectives, 103, 472–480.
Purnomo, C. (2013). Utilization of bagasse fly ash for carbon–zeolite composite preparation. Journal of Porous Materials, 20, 1305–1313.
Purnomo, C. W., Salim, C., & Hinode, H. (2011). Preparation and characterization of activated carbon from bagasse fly ash. Journal of Analytical and Applied Pyrolysis, 91, 257–262.
Purnomo, C. W., Salim, C., & Hinode, H. (2012). Synthesis of pure Na–X and Na–A zeolite from bagasse fly ash. Microporous and Mesoporous Materials, 162, 6–13.
Rabelo, S. C., Amezquita Fonseca, N. A., Andrade, R. R., Maciel Filho, R., & Costa, A. C. (2011). Ethanol production from enzymatic hydrolysis of sugarcane bagasse pretreated with lime and alkaline hydrogen peroxide. Biomass and Bioenergy, 35, 2600–2607.
Rainey, T. J. (2009). A study of the permeability and compressibility properties of bagasse pulp. Brisbane: Queensland University of Technology.
Ramanathan, V., Crutzen, P. J., Kiehl, J. T., & Rosenfeld, D. (2001). Aerosols, climate, and the hydrological cycle. Science, 294, 2119–2124.
Rameshraja, D., Srivastava, V. C., Kushwaha, J. P., & Mall, I. D. (2012). Quinoline adsorption onto granular activated carbon and bagasse fly ash. Chemical Engineering Journal, 181–182, 343–351.
Ramjeawon, T., & Baguant, J. (1995). Evaluation of critical BOD loadings from Mauritian sugar factories to streams and standards setting. Journal of Environmental Management, 45, 163–176.
Roberts, G. C., Andrea, M. O., Zhou, K., & Artaxo, P. (2001). Cloud condensation nuclei in the Amazon Basin: “Marine” conditions over a continent? Geophysical Research Letters, 28, 2807–2810.
Rukzon, S., & Chindaprasirt, P. (2012). Utilization of bagasse ash in high-strength concrete. Materials & Design, 34, 45–50.
Sahu, A. K., Mall, I. D., & Srivastava, V. C. (2007). Studies on the adsorption of furfural from aqueous solution onto low-cost bagasse fly ash. Chemical Engineering Communications, 195, 316–335.
Sahu, S., Patel, B. H. M., Dutt, T., & Verma, A. K. (2014). Effect of graded level of sugarcane press mud in ration on carcass characteristics of crossbred (Landrace x Desi) pigs. Indian Journal of Animal Sciences, 84, 1109–1112.
Said, G., Khan, M. J., Usman, K., & Rehman, H. (2010). Impact of press mud as organic amendment on physico-chemical characteristics of calcareous soil. Sarhad Journal of Agriculture, 26, 565–570.
Santos, J. C., Carvalho, W., Silva, S. S., & Converti, A. (2003). Xylitol production from sugarcane bagasse hydrolyzate in fluidized bed reactor. Effect of air flowrate. Biotechnology Progress, 19, 1210–1215.
Santos, J. C., Converti, A., de Carvalho, W., Mussatto, S. I., & da Silva, S. S. (2005). Influence of aeration rate and carrier concentration on xylitol production from sugarcane bagasse hydrolyzate in immobilized-cell fluidized bed reactor. Process Biochemistry, 40, 113–118.
Saranraj, P., & Stella, D. (2012). Vermicomposting and its importance in improvement of soil nutrients and agricultural crops. Novus Natural Science Research, 1, 14–23.
Saranraj, P., & Stella, D. (2014). Composting of sugar mill wastes: a review. World Applied Sciences Journal, 31, 2029–2044.
Shah, B., Tailor, R., & Shah, A. (2011). Equilibrium, kinetics, and breakthrough curve of phenol sorption on zeolitic material derived from BFA. Journal of Dispersion Science and Technology, 33, 41–51.
Shah, B., Mistry, C., & Shah, A. (2013a). Seizure modeling of Pb(II) and Cd(II) from aqueous solution by chemically modified sugarcane bagasse fly ash: isotherms, kinetics, and column study. Environmental Science & Pollution Research, 20, 2193–2209.
Shah, B. A., Shah, A. V., Patel, H. D., & Mistry, C. B. (2013b). High-value zeolitic material from bagasse fly ash: utilization for dye elimination. Water Environment Research, 85, 558–567.
Shankaraiah, C., & Murthy, K. N. K. (2005). Effect of enriched pressmud cake on growth, yield and quality of sugarcane. Sugar Technology, 7, 1–4.
Sherman, R. L. (2011). Vermicomposting for businesses and institutions. Boca Raton: CRC Press.
Shurpali, N. J., HyvÖNen, N. P., Huttunen, J. T., Clement, R. J., Reichstein, M., NykÄNen, H., Biasi, C., & Martikainen, P. J. (2009). Cultivation of a perennial grass for bioenergy on a boreal organic soil–carbon sink or source? GCB Bioenergy, 1, 35–50.
Shurpali, N. J., Biasi, C., Jokinen, S., Hyvönen, N., & Martikainen, P. J. (2013). Linking water vapor and CO2 exchange from a perennial bioenergy crop on a drained organic soil in eastern Finland. Agricultural and Forest Meteorology, 168, 47–58.
Singh, N. B., Singh, V. D., & Rai, S. (2000). Hydration of bagasse ash-blended portland cement. Cement and Concrete Research, 30, 1485–1488.
Singh, K. P., Suman, A., Singh, P. N., & Lal, M. (2007). Yield and soil nutrient balance of a sugarcane plant–ratoon system with conventional and organic nutrient management in sub-tropical India. Nutrient Cycling in Agroecosystems, 79, 209–219.
Singh, M. K., Kesari, K. K., & Behari, J. (2010). Ultrasonic irradiation of activated industrial sludge. International Journal of Environment and Pollution, 43, 52–65.
Smith, K. (1975). Principle of applied climatology London, Mc. Hill. Bk. Com. (UK) Ltd.
Soni, A. B., Keshav, A., Verma, V., & Suresh, S. (2012). Removal of glycolic acid from aqueous solution using bagasse flyash. International Journal of Environmental Research, 6, 297–308.
Souza, A. E., Teixeira, S. R., Santos, G. T. A., Costa, F. B., & Longo, E. (2011). Reuse of sugarcane bagasse ash (SCBA) to produce ceramic materials. Journal of Environmental Management, 92, 2774–2780.
Srivastava, V. C., Prasad, B., Mishra, I. M., Mall, I. D., & Swamy, M. M. (2008). Prediction of breakthrough curves for sorptive removal of phenol by bagasse fly ash packed Bed. Industrial & Engineering Chemistry Research, 47, 1603–1613.
Streets, D. G., Gupta, S., Waldhoff, S. T., Wang, M. Q., Bond, T. C., & Yiyun, B. (2001). Black carbon emissions in China. Atmospheric Environment, 35, 4281–4296.
Subramanian, S., Pande, G., De Weireld, G., Giraudon, J.-M., Lamonier, J.-F., & Batra, V. S. (2013). Sugarcane bagasse fly ash as an attractive agro-industry source for VOC removal on porous carbon. Industrial Crops and Products, 49, 108–116.
Suthar, S. (2012). Earthworm production in cattle dung vermicomposting system under different stocking density loads. Environmental Science & Pollution Research, 19, 748–755.
Tahir, H., Sultan, M., Akhtar, N., Hameed, U., & Abid, T. (2012). Application of natural and modified sugar cane bagasse for the removal of dye from aqueous solution. Journal of Saudi Chemical Society. doi:10.1016/j.jscs.2012.09.007.
Tajernia, H., Ebadi, T., Nasernejad, B., & Ghafori, M. (2014). Arsenic removal from water by sugarcane bagasse: an application of response surface methodology (RSM). Water, Air, & Soil Pollution, 225, 1–22.
Teixeira, S. R., De Souza, A. E., De Almeida Santos, G. T., Vilche Peña, A. F., & Miguel, Á. G. (2008). Sugarcane bagasse ash as a potential quartz replacement in red ceramic. Journal of the American Ceramic Society, 91, 1883–1887.
Teixeira, S. R., Magalhães, R. S., Arenales, A., Souza, A. E., Romero, M., & Rincón, J. M. (2014). Valorization of sugarcane bagasse ash: producing glass-ceramic materials. Journal of Environmental Management, 134, 15–19.
Tominaga, T. T., Cassaro, F. A. M., Bacchi, O. O. S., Reichardt, K., Oliveira, J. C. M., & Timm, L. C. (2002). Variability of soil water content and bulk density in a sugarcane field. Soil Research, 40, 604–614.
Umar, Z., & Sharif, F. (2013). Use of earthworms for composting of sugar industry waste. Biologia, 59, 115–123.
van Hove, L. W. A., Bossen, M. E., de Bok, F. A. M., & Hooijmaijers, C. A. M. (1999). The uptake of O3 by poplar leaves: the impact of a long-term exposure to low O3-concentrations. Atmospheric Environment, 33, 907–917.
Wasewar, K. L., Prasad, B., & Gulipalli, S. (2009). Adsorption of selenium using bagasse fly ash. CLEAN Soil, Air, Water, 37, 534–543.
WCDE (1987) 42/187. Report of the world commission on environment and development, United Nations General Assembly, 96th plenary meeting, available at www.un.org/documents/ga/res/42/ares42-187.htm.
Wei, Y.-A., & Xu, Y.-j. (2004). Eco-friendly management of sugar industry effluents in Guangxi, China. Sugar Technology, 6, 285–290.
Wood, C. (2003). Environmental impact assessment: a comparative review. Upper Saddle River: Prentice Hall.
Yadav, R. L., & Solomon, S. (2006). Potential of developing sugarcane by-product based industries in India. Sugar Technology, 8, 104–111.
Yadav, R. L., & Subba Rao, A. V. M. (2001). Atlas of cropping systems in India, PDCSR bulletin No 2001–2. Meerut: Project Directorate for Cropping Systems Research.
Yadav, L. S., Mishra, B. K., Kumar, A., & Paul, K. K. (2014). Arsenic removal using bagasse fly ash-iron coated and sponge iron char. Journal of Environmental Chemical Engineering, 2, 1467–1473.
Yang, S.-D., Liu, J.-X., Wu, J., Tan, H.-W., & Li, Y.-R. (2013). Effects of vinasse and press mud application on the biological properties of soils and productivity of sugarcane. Sugar Technology, 15, 152–158.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Bhatnagar, A., Kesari, K.K. & Shurpali, N. Multidisciplinary Approaches to Handling Wastes in Sugar Industries. Water Air Soil Pollut 227, 11 (2016). https://doi.org/10.1007/s11270-015-2705-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11270-015-2705-y