Skip to main content

Advertisement

Log in

Multidisciplinary Approaches to Handling Wastes in Sugar Industries

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The global sugarcane production is about 1.91 billion tons annually and is concentrated in tropical regions, particularly in developing nations in Latin America and Asia. According to the UN Food and Agricultural Organization (FAO), there are over 100 countries producing sugarcane today. The increase in sugarcane production implies a proportional increase in sugar industry wastes. As a consequence of such increasing trend, sugar industries are facing severe environmental problems due to the lack of sustainable solutions for their waste management. Therefore, immediate attention is required to find a proper way of management to deal with sugar industry wastes and effluent in order to minimize environmental pollution and associated health risks. In this paper, different sources of solid and liquid wastes from sugarcane agriculture and associated sugar agro-industries are reviewed and valorization approaches of these different wastes are discussed. Some of the important resource recovery options from sugar industry wastes, which have been discussed in this review, include ethanol production, recovery of chemicals, use of bagasse and bagasse fly ash as adsorbents in water treatment and building materials. Technologies associated with the treatment of wastewater from sugar industries and efficient ways of utilization of this treated water in agriculture with special attention to measurement of crop water use efficiency are reviewed in view of our own research activities carried out in the past.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • AARRO (1996). Environmental Degradation and its implication on Rural Development, Report of the International Workshop. Cairo.

  • Adani, F., Genevini, P. L., & Tambone, F. (1995). A new index of organic matter stability. Compostites Science & Utilization, 3, 25–37.

    Article  Google Scholar 

  • Agrawal, K. M., Barve, B. R., & Khan, S. S. (2013). Biogas from pressmud, IOSR journal of mechanical and civil engineering (pp. 37–41). Jaysingpur: Dr. J.J.Magdum College of Engineering.

    Google Scholar 

  • Ali, I., Al-Othman, Z., Alwarthan, A., Asim, M., & Khan, T. (2014). Removal of arsenic species from water by batch and column operations on bagasse fly ash. Environmental Science & Pollution Research, 21, 3218–3229.

    Article  CAS  Google Scholar 

  • Allen, R. G., Pereira, L. S., Howell, T. A., & Jensen, M. E. (2011). Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agricultural Water Management, 98, 899–920.

    Article  Google Scholar 

  • Alonso Pippo, W., Garzone, P., & Cornacchia, G. (2007). Agro-industry sugarcane residues disposal: the trends of their conversion into energy carriers in Cuba. Waste Management, 27, 869–885.

    Article  CAS  Google Scholar 

  • Asaithambi, P., & Matheswaran, M. (2015). Electrochemical treatment of simulated sugar industrial effluent: optimization and modeling using a response surface methodology. Arabian Journal of Chemistry. doi:10.1016/j.arabjc.2011.1010.1004.

    Google Scholar 

  • Badshah, M., Lam, D. M., Liu, J., & Mattiasson, B. (2012). Use of an automatic methane potential test system for evaluating the biomethane potential of sugarcane bagasse after different treatments. Bioresource Technology, 114, 262–269.

    Article  CAS  Google Scholar 

  • Bahurudeen, A., Marckson, A. V., Kishore, A., & Santhanam, M. (2014). Development of sugarcane bagasse ash based Portland pozzolana cement and evaluation of compatibility with superplasticizers. Construction and Building Materials, 68, 465–475.

    Article  Google Scholar 

  • Balakrishnan, M., & Batra, V. S. (2011). Valorization of solid waste in sugar factories with possible applications in India : a review. Journal of Environmental Management, 92, 2886–2891.

    Article  CAS  Google Scholar 

  • Baldocchi, D. (2014). Measuring fluxes of trace gases and energy between ecosystems and the atmosphere—the state and future of the eddy covariance method. Global Change Biology, 20, 3600–3609.

    Article  Google Scholar 

  • Bansal, S., & Kapoor, K. K. (2000). Vermicomposting of crop residues and cattle dung with Eisenia foetida. Bioresource Technology, 73, 95–98.

    Article  CAS  Google Scholar 

  • Baruah, A. K., Sharma, R. N., & Borah, G. C. (1993). Impact of sugar mill and distillery effluents on water quality of river Gelabil Assam. Indian Journal of Environmental Health, 35, 288–293.

    CAS  Google Scholar 

  • Basanta, R., Garcia Delgado, M., & Cervantes, J. (2007). Sostenibilidad del reciclaje de residuos de la agroindustria azucarera. Una Revisiόn Ciencia y Tecnologı’a Alimentaria, 5, 293–305.

    Article  CAS  Google Scholar 

  • Billore, S. K., Singh, N., Ram, H. K., Sharma, J. K., Singh, V. P., Nelson, R. M., & Dass, P. (2001). Treatment of a molasses based distillery effluent in a constructed wetland in central India. Water Science and Technology, 44, 441–448.

    CAS  Google Scholar 

  • Cancado, J. E. D., Saldiva, P. H. N., Pereira, L. A. A., Lara, L. B. L. S., Artaxo, P., Martinelli, L. A., Arbex, M. A., Zanobetti, A., & Braga, A. L. F. (2006). The impact of sugar cane—burning emissions on the respiratory system of children and the elderly. Environmental Health Perspectives, 114, 725–729.

    Article  CAS  Google Scholar 

  • Carmo, J. B. D., Filoso, S., Zotelli, L. C., de Sousa Neto, E. R., Pitombo, L. M., Duarte-Neto, P. J., Vargas, V. P., Andrade, C. A., Gava, G. J. C., Rossetto, R., Cantarella, H., Neto, A. E., & Martinelli, L. A. (2013). Infield greenhouse gas emissions from sugarcane soils in Brazil: effects from synthetic and organic fertilizer application and crop trash accumulation. GCB Bioenergy, 5, 267–280.

    Article  CAS  Google Scholar 

  • Carrier, M., Hardie, A. G., Uras, Ü., Görgens, J., & Knoetze, J. (2012). Production of char from vacuum pyrolysis of South-African sugar cane bagasse and its characterization as activated carbon and biochar. Journal of Analytical and Applied Pyrolysis, 96, 24–32.

    Article  CAS  Google Scholar 

  • Carvalho, W., Silva, S. S., Santos, J. C., & Converti, A. (2003). Xylitol production by Ca-alginate entrapped cells: comparison of different fermentation systems. Enzyme and Microbial Technology, 32, 553–559.

    Article  CAS  Google Scholar 

  • Carvalho, W., Santos, J. C., Canilha, L., Silva, S. S., Perego, P., & Converti, A. (2005). Xylitol production from sugarcane bagasse hydrolysate: metabolic behaviour of Candida guilliermondii cells entrapped in Ca-alginate. Biochemical Engineering Journal, 25, 25–31.

    Article  CAS  Google Scholar 

  • Chaudhary, R., & Sahu, O. P. (2013). Treatment of sugar waste water by electrocoagulation. Journal of Atmospheric Pollution, 1, 5–7.

    Google Scholar 

  • Chen, J. C. P. & Chou, C. C. (1993). Cane sugar handbook: a manual for cane sugar manufacturers and their chemists.Wiley.

  • Chi, M.-C. (2012). Effects of sugar cane bagasse ash as a cement replacement on properties of mortars. Science and Engineering of Composite Materials, 19, 279–285.

    CAS  Google Scholar 

  • Chusilp, N., Jaturapitakkul, C., & Kiattikomol, K. (2009). Utilization of bagasse ash as a pozzolanic material in concrete. Construction and Building Materials, 23, 3352–3358.

    Article  Google Scholar 

  • Cifuentes, R., de León, R., Porres, C., & Rolz, C. (2013). Windrow composting of waste sugar cane and press mud mixtures. Sugar Technology, 15, 406–411.

    Article  Google Scholar 

  • Cordeiro, G. C., Toledo Filho, R. D., Tavares, L. M., & Fairbairn, E. M. R. (2008). Pozzolanic activity and filler effect of sugar cane bagasse ash in Portland cement and lime mortars. Cement and Concrete Composites, 30, 410–418.

    Article  CAS  Google Scholar 

  • Cordeiro, G. C., Toledo Filho, R. D., & Fairbairn, E. M. R. (2009a). Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash. Construction and Building Materials, 23, 3301–3303.

    Article  Google Scholar 

  • Cordeiro, G. C., Toledo Filho, R. D., Tavares, L. M., & Fairbairn, E. D. M. R. (2009b). Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cement and Concrete Research, 39, 110–115.

    Article  CAS  Google Scholar 

  • Crutzen, P. J., & Andreae, M. O. (1990). Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science, New Series, 250, 1669–1678.

    CAS  Google Scholar 

  • Crutzen, P. J., Mosier, A. R., Smith, K. A., & Winiwarter, W. (2008). N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmospheric Chemistry and Physics, 8, 389–395.

    Article  CAS  Google Scholar 

  • Damodharan, U., & Reddy, M. V. (2012). Impact of sugar industrial treated effluent on the growth factor in sugarcane––Cuddalore, India. Journal of Sustainable Bioenergy System, 2, 43–48.

    Article  CAS  Google Scholar 

  • Dasgupta, A. (1983). Anaerobic digestion of solid wastes of sugar cane industry. Coral Gables, FL: University of Miami.

  • Dawson, L., & Boopathy, R. (2007). Use of post-harvest sugarcane residue for ethanol production. Bioresource Technology, 98, 1695–1699.

    Article  CAS  Google Scholar 

  • de Andrade Landell, M. G., Scarpari, M. S., Xavier, M. A., dos Anjos, I. A., Baptista, A. S., de Aguiar, C. L., da Silva, D. N., Bidóia, M. A. P., Brancalião, S. R., Bressiani, J. A., de Campos, M. F., Miguel, P. E. M., da Silva, T. N., da Silva, V. H. P., Anjos, L. O. S., & Ogata, B. H. (2013). Residual biomass potential of commercial and pre-commercial sugarcane cultivars. Scientia Agricola, 270, 299–304.

    Article  Google Scholar 

  • Dos Santos, V. G., De Souza, J. T. M., Tarley, C. T., Caetano, J., & Dragunski, D. (2011). Copper ions adsorption from aqueous medium using the biosorbent sugarcane bagasse in natura and chemically modified. Water, Air, & Soil Pollution, 216, 351–359.

    Article  CAS  Google Scholar 

  • Dourado-Neto, D., Timm, C., Oliveira, J. C. M., Reichardt, K., Bacchi, O. O. S., Tominaga, T. T., & Cássaro, F. A. M. (1999). State-space approach for the analysis of soil water content and temperature in a sugarcane crop. Scientia Agricola, 56, 1215–1221.

    Google Scholar 

  • Efe, S. I. (2008). Spatial distribution of particulate air pollution in Nigerian cities: implications for human health. Journal of Environmental Health Research, 7, 102–109.

    Google Scholar 

  • Eykelbosh, A. J., Johnson, M. S., Queiroz, E. S. D., Dalmagro, H. J., & Couto, E. G. (2014). Biochar from sugarcane filtercake reduces soil CO2 emissions relative to raw residue and improves water retention and nutrient availability in a highly-weathered tropical soil. PLoS ONE, 9, e98523.

    Article  CAS  Google Scholar 

  • Fairbairn, E. M. R., Americano, B. B., Cordeiro, G. C., Paula, T. P., Toledo Filho, R. D., & Silvoso, M. M. (2010). Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits. Journal of Environmental Management, 91, 1864–1871.

    Article  CAS  Google Scholar 

  • Fakayode, P. K. (2005). Alteration in physico-chemical characteristics of soil irrigated with sugar mill effluent. Journal of Environmental Biology, 12, 103–109.

    Google Scholar 

  • FAOSTAT (2011). Food and Agriculture Organization of the United Nations.

  • FAOSTAT (2015). Food and Agriculture Organization of the United Nations.

  • Faria, K. C. P., Gurgel, R. F., & Holanda, J. N. F. (2012). Recycling of sugarcane bagasse ash waste in the production of clay bricks. Journal of Environmental Management, 101, 7–12.

    Article  CAS  Google Scholar 

  • Frías, M., Villar, E., & Savastano, H. (2011). Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture. Cement and Concrete Composites, 33, 490–496.

    Article  CAS  Google Scholar 

  • Fungaro, D. A., Reis, T. V. S., Logli, M. A., & Oliveira, N. A. (2014). Synthesis and characterization of zeolitic material derived from sugarcane straw ash. American Journal of Environmental Protection, 2, 16–21.

    Article  CAS  Google Scholar 

  • Gálvez, L. O. (2000). Diversified productions in sugarcane agro-industry, Havana/Cuba, ICIDCA.

  • Ganesan, K., Rajagopal, K., & Thangavel, K. (2007). Evaluation of bagasse ash as supplementary cementitious material. Cement and Concrete Composites, 29, 515–524.

    Article  CAS  Google Scholar 

  • Ghosh, M., Chattopadhyay, G. N., & Baral, K. (1999). Transformation of phosphorus during vermicomposting. Bioresource Technology, 69, 149–154.

    Article  CAS  Google Scholar 

  • Gopal, A. R., & Kammen, D. M. (2009). Molasses for ethanol: the economic and environmental impacts of a new pathway for the lifecycle greenhouse gas analysis of sugarcane ethanol. Environmental Research Letters, 4, 044005.

    Article  CAS  Google Scholar 

  • Gullett, B. K., Touati, A., Huwe, J., & Hakk, H. (2006). PCDD and PCDF emissions from simulated sugarcane field burning. Environmental Science & Technology, 40, 6228–6234.

    Article  CAS  Google Scholar 

  • Gunkel, G., Kosmol, J., Sobral, M., Rohn, H., Montenegro, S., & Aureliano, J. (2007). Sugar cane industry as a source of water pollution—case study on the situation in Ipojuca River, Pernambuco, Brazil. Water, Air, and Soil Pollution, 180, 261–269.

    Article  CAS  Google Scholar 

  • Gupta, V. K., & Ali, I. (2000). Utilisation of bagasse fly ash (a sugar industry waste) for the removal of copper and zinc from wastewater. Separation and Purification Technology, 18, 131–140.

    Article  CAS  Google Scholar 

  • Gupta, V. K., & Ali, I. (2001). Removal of DDD and DDE from wastewater using bagasse fly ash, a sugar industry waste. Water Research, 35, 33–40.

    Article  CAS  Google Scholar 

  • Gupta, V. K., & Ali, I. (2004). Removal of lead and chromium from wastewater using bagasse fly ash—a sugar industry waste. Journal of Colloid and Interface Science, 271, 321–328.

    Article  CAS  Google Scholar 

  • Gupta, V. K., & Sharma, S. (2003). Removal of zinc from aqueous solutions using bagasse fly ash—a low cost adsorbent. Industrial & Engineering Chemistry Research, 42, 6619–6624.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Mohan, D., & Sharma, S. (1998a). >Removal of lead from wastewater using bagasse fly ash—a sugar industry waste material. Separation Science and Technology, 33, 1331–1343.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Sharma, S., Yadav, I. S., & Mohan, D. (1998b). Utilization of bagasse fly ash generated in the sugar industry for the removal and recovery of phenol and p-nitrophenol from wastewater. Journal of Chemical Technology & Biotechnology, 71, 180–186.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Mohan, D., Sharma, S., & Sharma, M. (2000). Removal of basic dyes (Rhodamine B and Methylene blue) from aqueous solutions using bagasse fly ash. Separation Science and Technology, 35, 2097–2113.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Jain, C. K., Ali, I., Chandra, S., & Agarwal, S. (2002). Removal of lindane and malathion from wastewater using bagasse fly ash—a sugar industry waste. Water Research, 36, 2483–2490.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Jain, C. K., Ali, I., Sharma, M., & Saini, V. K. (2003). Removal of cadmium and nickel from wastewater using bagasse fly ash—a sugar industry waste. Water Research, 37, 4038–4044.

    Article  CAS  Google Scholar 

  • Güven, G., Perendeci, A., & Tanyolaç, A. (2009). Electrochemical treatment of simulated beet sugar factory wastewater. Chemical Engineering Journal, 151, 149–159.

    Article  CAS  Google Scholar 

  • Hall, D., Wu, C.-Y., Hsu, Y.-M., Stormer, J., Engling, G., Capeto, K., Wang, J., Brown, S., Li, H.-W., & Yu, K.-M. (2012). PAHs, carbonyls, VOCs and PM2.5 emission factors for pre-harvest burning of Florida sugarcane. Atmospheric Environment, 55, 164–172.

    Article  CAS  Google Scholar 

  • Hampannavar, U. S., & Shivayogimath, C. B. (2010). Anaerobic treatment of sugar industry wastewater by upflow anaerobic sludge blanket reactor at ambient temperature. International Journal of Environmental Sciences, 1, 631–639.

    CAS  Google Scholar 

  • Hiwarkar, A. D., Srivastava, V. C., & Mall, I. D. (2015). Comparative studies on adsorptive removal of indole by granular activated carbon and bagasse fly ash. Environmental Progress & Sustainable Energy, 34, 492–503.

    Article  CAS  Google Scholar 

  • Hondo, H., & Kikuchi, K. (2014). The effect of local biomass projects on energy balance and GHG emission: a life cycle approach. International Journal of Green Energy, 12, 160–167.

    Article  Google Scholar 

  • Ingaramo, A., Heluane, H., Colombo, M., & Cesca, M. (2009). Water and wastewater eco-efficiency indicators for the sugar cane industry. Journal of Cleaner Production, 17, 487–495.

    Article  Google Scholar 

  • Inyang, M., Gao, B., Pullammanappallil, P., Ding, W., & Zimmerman, A. R. (2010). Biochar from anaerobically digested sugarcane bagasse. Bioresource Technology, 101, 8868–8872.

    Article  CAS  Google Scholar 

  • Inyang, M., Gao, B., Ding, W., Pullammanappallil, P., Zimmerman, A. R., & Cao, X. (2011). Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse. Separation Science and Technology, 46, 1950–1956.

    Article  CAS  Google Scholar 

  • Jambhekar, H. A. (1992). Use of earthworm as a potential source to decompose organic waste, in Proc. Natl. Sem. On organic farming (pp. 52–53). Pune: MPKV, College of Agriculture.

    Google Scholar 

  • Janjaturaphan, S., & Wansom, S. (2010). Pozzolanic activity of industrial sugar cane bagasse ash. Suranaree Journal of Science Technology, 17, 349–357.

    Google Scholar 

  • Jiménez, A. M., Borja, R., & Martín, A. (2004). A comparative kinetic evaluation of the anaerobic digestion of untreated molasses and molasses previously fermented with Penicillium decumbens in batch reactors. Biochemical Engineering Journal, 18, 121–132.

    Article  CAS  Google Scholar 

  • Jiménez-Quero, V. G., León-Martínez, F. M., Montes-García, P., Gaona-Tiburcio, C., & Chacón-Nava, J. G. (2013). Influence of sugar-cane bagasse ash and fly ash on the rheological behavior of cement pastes and mortars. Construction and Building Materials, 40, 691–701.

    Article  Google Scholar 

  • Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., & Ritchie, J. T. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18, 235–265.

    Article  Google Scholar 

  • Jorapur, R., & Rajvanshi, A. K. (1997). Sugarcane leaf-bagasse gasifiers for industrial heating applications. Biomass and Bioenergy, 13, 141–146.

    Article  Google Scholar 

  • Kesari, K. K., & Behari, J. (2008). Ultrasonic impact on bacterial population in sewage sample. International Journal of Environment and Waste Management, 2, 233–244.

    Article  CAS  Google Scholar 

  • Kesari, K. K., Kumar, S., Verma, H. N., & Behari, J. (2011a). Influence of ultrasonic treatment in sewage sludge. Hydrology: Current Research, 2, 115.

    CAS  Google Scholar 

  • Kesari, K. K., Verma, H. N., & Behari, J. (2011b). Physical methods in wastewater treatment. International Journal of Environmental Technology and Management, 14, 43–66.

    Article  CAS  Google Scholar 

  • Kumar, A., Prasad, B., & Mishra, I. M. (2014). Adsorption of acrylonitrile from aqueous solution using bagasse fly ash. Journal of Water Process Engineering, 2, 129–133.

    Article  Google Scholar 

  • Kumaraguru, K., Rengasamy, M., Kumar, E. T. P., & Venkadesh, D. (2014). Factors affecting printing quality of paper from bagasse pulp. International Journal of ChemTech Research, 6, 2783–2787.

    CAS  Google Scholar 

  • Kuo, C.-H., & Lee, C.-K. (2009). Enhanced enzymatic hydrolysis of sugarcane bagasse by N-methylmorpholine-N-oxide pretreatment. Bioresource Technology, 100, 866–871.

    Article  CAS  Google Scholar 

  • Kushwaha, J. P. (2015). A review on sugar industry wastewater: sources, treatment technologies, and reuse. Desalination and Water Treatment, 53, 309–318.

    Article  CAS  Google Scholar 

  • Kushwaha, J. P., Srivastava, V. C., & Mall, I. D. (2010). Treatment of dairy wastewater by commercial activated carbon and bagasse fly ash: parametric, kinetic and equilibrium modelling, disposal studies. Bioresource Technology, 101, 3474–3483.

    Article  CAS  Google Scholar 

  • Lataye, D. H., Mishra, I. M., & Mall, I. D. (2006). Removal of pyridine from aqueous solution by adsorption on bagasse fly ash. Industrial & Engineering Chemistry Research, 45, 3934–3943.

    Article  CAS  Google Scholar 

  • Lataye, D. H., Mishra, I. M., & Mall, I. D. (2008a). Adsorption of 2-picoline onto bagasse fly ash from aqueous solution. Chemical Engineering Journal, 138, 35–46.

    Article  CAS  Google Scholar 

  • Lataye, D. H., Mishra, I. M., & Mall, I. D. (2008b). Multicomponent sorptive removal of toxics pyridine, 2-Picoline, and 4-picoline from aqueous solution by bagasse fly ash: optimization of process parameters. Industrial & Engineering Chemistry Research, 47, 5629–5635.

    Article  CAS  Google Scholar 

  • Law, B. E., Falge, E., Gu, L., Baldocchi, D. D., Bakwin, P., Berbigier, P., Davis, K., Dolman, A. J., Falk, M., Fuentes, J. D., Goldstein, A., Granier, A., Grelle, A., Hollinger, D., Janssens, I. A., Jarvis, P., Jensen, N. O., Katul, G., Mahli, Y., Matteucci, G., Meyers, T., Monson, R., Munger, W., Oechel, W., Olson, R., Pilegaard, K., Paw, U. K. T., Thorgeirsson, H., Valentini, R., Verma, S., Vesala, T., Wilson, K., & Wofsy, S. (2002). Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology, 113, 97–120.

    Article  Google Scholar 

  • Lee, K. E. (1985). Earthworms—their ecology and relationship with soil and land use. Sydney: Academic.

    Google Scholar 

  • Li, Y., & Yang, L. (2015). Sugarcane agriculture and sugar industry in China. Sugar Technology, 17, 1–8.

    Article  Google Scholar 

  • López González, L. M., Pereda Reyes, I., Dewulf, J., Budde, J., Heiermann, M., & Vervaeren, H. (2014). Effect of liquid hot water pre-treatment on sugarcane press mud methane yield. Bioresource Technology, 169, 284–290.

    Article  CAS  Google Scholar 

  • Madurwar, M., Mandavgane, S., & Ralegaonkar, R. (2014). Development and feasibility analysis of bagasse ash bricks. Journal of Energy Engineering, 141, 04014022.

    Article  Google Scholar 

  • Mahendran, R., Ramli, N. H., & AbdulRahman, H. N. (2014). Study the effect of using ultrasonic membrane anaerobic system in treating sugarcane waste and methane gas production. International Journal Research Engineering Technology, 3, 299–303.

    Google Scholar 

  • Mall, I. D., Srivastava, V. C., Agarwal, N. K., & Mishra, I. M. (2005). Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 264, 17–28.

    Article  CAS  Google Scholar 

  • Mall, I. D., Srivastava, V. C., & Agarwal, N. K. (2006). Removal of orange-G and methyl violet dyes by adsorption onto bagasse fly ash—kinetic study and equilibrium isotherm analyses. Dyes and Pigments, 69, 210–223.

    Article  CAS  Google Scholar 

  • Mane, V. S., Mall, I. D., & Srivastava, V. C. (2007). Use of bagasse fly ash as an adsorbent for the removal of brilliant green dye from aqueous solution. Dyes and Pigments, 73, 269–278.

    Article  CAS  Google Scholar 

  • Martinelli, L. A., & Filoso, S. (2008). Expansion of sugarcane ethanol production in Brazil: environmental and social challenges. Ecological Applications, 18, 885–898.

    Article  Google Scholar 

  • Martirena Hernández, J. F., Middendorf, B., Gehrke, M., & Budelmann, H. (1998). Use of wastes of the sugar industry as pozzolana in lime-pozzolana binders: study of the reaction. Cement and Concrete Research, 28, 1525–1536.

    Article  Google Scholar 

  • Mathew, S., & Abraham, T. E. (2005). Studies on the production of feruloyl esterase from cereal brans and sugar cane bagasse by microbial fermentation. Enzyme and Microbial Technology, 36, 565–570.

    Article  CAS  Google Scholar 

  • Mello, F. F. C., Cerri, C. E. P., Davies, C. A., Holbrook, N. M., Paustian, K., Maia, S. M. F., Galdos, M. V., Bernoux, M., & Cerri, C. C. (2014). Payback time for soil carbon and sugar-cane ethanol. Nature Climate Change, 4, 605–609.

    Article  CAS  Google Scholar 

  • Mitter, E., dos Santos, G., de Almeida, É., Morão, L., Rodrigues, H., & Corso, C. (2012). Analysis of acid alizarin violet N Dye removal using sugarcane bagasse as adsorbent. Water, Air, & Soil Pollution, 223, 765–770.

    Article  CAS  Google Scholar 

  • Moisés, M. P., da Silva, C. T. P., Meneguin, J. G., Girotto, E. M., & Radovanovic, E. (2013). Synthesis of zeolite NaA from sugarcane bagasse ash. Materials Letters, 108, 243–246.

    Article  CAS  Google Scholar 

  • Mubarik, S., Saeed, A., Athar, M. M., & Iqbal, M. (2015). Characterization and mechanism of the adsorptive removal of 2,4,6-trichlorophenol by biochar prepared from sugarcane bagasse. Journal of Industrial and Engineering Chemistry. doi:10.1016/j.jiec.2015.1009.1029.

    Google Scholar 

  • Mussatto, S. I., Dragone, G., Rocha, G. J. M., & Roberto, I. C. (2006). Optimum operating conditions for brewer’s spent grain soda pulping. Carbohydrate Polymers, 64, 22–28.

    Article  CAS  Google Scholar 

  • Muthusamy, P., Murugan, S., & Smitha, M. (2012). Removal of nickel ion from industrial waste water using maize cob. ISCA Journal of Biological Sciences, 1, 7–11.

    Google Scholar 

  • Nagavallemma, K. P., Wani, S. P., Lacroix, S., Padmaja, V. V., Vineela, C., Babu, R. M., & Sahrawat, K. L. (2006). Vermicomposting: recycling wastes into valuable organic fertilizer. SAT eJournal, 2, 1–16.

    Google Scholar 

  • Nemerow, N. L., & Agardy, F. J. (1998). Strategies of industrial and hazardous waste management. USA: International Thomson publishing company.

    Google Scholar 

  • Noonpui, S., Thiravetyan, P., Nakbanpote, W., & Netpradit, S. (2010). Color removal from water-based ink wastewater by bagasse fly ash, sawdust fly ash and activated carbon. Chemical Engineering Journal, 162, 503–508.

    Article  CAS  Google Scholar 

  • Nour, A. H., & Zainal, Z. (2014). Membrane fouling control by ultrasonic membrane anaerobic system (UMAS) to produce methane gas. International Journal of Engineering Science Research Technology, 3, 487–497.

    Article  Google Scholar 

  • Oglesby, R. J., Marshall, S., & Taylor, J. A. (1999). The climatic effects of biomass burning: investigations with a global climate model. Environmental Modelling & Software, 14, 253–259.

    Article  Google Scholar 

  • Oliveira, J. C. M. D., Reichardt, K., Bacchi, O. O. S., Timm, L. C., Dourado-Neto, D., Trivelin, P. C. O., Tominaga, T. T., Navarro, R. C., Piccolo, M. C., & Cássaro, F. A. M. (2000). Nitrogen dynamics in a soil-sugar cane system. Scientia Agricola, 57, 467–472.

    Article  Google Scholar 

  • Ozoh, P. E., & Oladimeji, A. A. (1984). Effects of Nigeria dyestuff effluent on germination latency, growth, and gross growth of Zea mays. Bulletin of Environmental Contamination and Toxicology, 33, 215–219.

    Article  CAS  Google Scholar 

  • Pande, Y. N. (2005). Impact of distillery and sugar mill effluents on hydrobiology of the Paravathi lake. Ecology, Environment and Conservation Paper, 1, 39–42.

    Google Scholar 

  • Partha, N., & Sivasubramanian, V. (2006). Recovery of chemicals from pressmud—a sugar industry waste. Indian Chemical Engeneerig, A, 48, 160–163.

    CAS  Google Scholar 

  • Pawar, N. J., Pondhe, G. M., & Patil, S. F. (1998). Groundwater pollution due to sugar-mill effluent, at Sonai, Maharashtra, India. Environmental Geology, 34, 151–158.

    Article  CAS  Google Scholar 

  • Payá, J., Monzó, J., Borrachero, M. V., Díaz-Pinzón, L., & Ordóñez, L. M. (2002). Sugar-cane bagasse ash (SCBA): studies on its properties for reusing in concrete production. Journal of Chemical Technology & Biotechnology, 77, 321–325.

    Article  CAS  Google Scholar 

  • Peña, M., Coca, M., González, G., Rioja, R., & García, M. T. (2003). Chemical oxidation of wastewater from molasses fermentation with ozone. Chemosphere, 51, 893–900.

    Article  CAS  Google Scholar 

  • Pereira Netto, A. D., Cunha, I. F., & Krauss, T. M. (2004). Persistence of polycyclic aromatic hydrocarbons in the soil of a burned area for agricultural purposes in Brazil. Bulletin of Environmental Contamination and Toxicology, 73, 1072–1077.

    Article  CAS  Google Scholar 

  • Pérez, R. (1995). Molasses. In: Tropical feeds and feeding systems, first FAO electronic conference.

  • Petit, A. (2014). Application of vacuum belt press filters for cane mud filtration and performance comparison with rotary filters. Sugar Industry-Zuckerindustrie, 139, 298–301.

    Google Scholar 

  • Poopak, S. & Reza, A. R. (2012). Environmental benefit of using bagasse in paper production—a case study of LCA in Iran, INTECH.

  • Pope, C. A. R., Bates, D. V., & Raizenne, M. E. (1995). Health effects of particulate air pollution: time for reassessment? Environmental Health Perspectives, 103, 472–480.

    Article  Google Scholar 

  • Purnomo, C. (2013). Utilization of bagasse fly ash for carbon–zeolite composite preparation. Journal of Porous Materials, 20, 1305–1313.

    Article  CAS  Google Scholar 

  • Purnomo, C. W., Salim, C., & Hinode, H. (2011). Preparation and characterization of activated carbon from bagasse fly ash. Journal of Analytical and Applied Pyrolysis, 91, 257–262.

    Article  CAS  Google Scholar 

  • Purnomo, C. W., Salim, C., & Hinode, H. (2012). Synthesis of pure Na–X and Na–A zeolite from bagasse fly ash. Microporous and Mesoporous Materials, 162, 6–13.

    Article  CAS  Google Scholar 

  • Rabelo, S. C., Amezquita Fonseca, N. A., Andrade, R. R., Maciel Filho, R., & Costa, A. C. (2011). Ethanol production from enzymatic hydrolysis of sugarcane bagasse pretreated with lime and alkaline hydrogen peroxide. Biomass and Bioenergy, 35, 2600–2607.

    Article  CAS  Google Scholar 

  • Rainey, T. J. (2009). A study of the permeability and compressibility properties of bagasse pulp. Brisbane: Queensland University of Technology.

    Google Scholar 

  • Ramanathan, V., Crutzen, P. J., Kiehl, J. T., & Rosenfeld, D. (2001). Aerosols, climate, and the hydrological cycle. Science, 294, 2119–2124.

    Article  CAS  Google Scholar 

  • Rameshraja, D., Srivastava, V. C., Kushwaha, J. P., & Mall, I. D. (2012). Quinoline adsorption onto granular activated carbon and bagasse fly ash. Chemical Engineering Journal, 181–182, 343–351.

    Article  CAS  Google Scholar 

  • Ramjeawon, T., & Baguant, J. (1995). Evaluation of critical BOD loadings from Mauritian sugar factories to streams and standards setting. Journal of Environmental Management, 45, 163–176.

    Article  Google Scholar 

  • Roberts, G. C., Andrea, M. O., Zhou, K., & Artaxo, P. (2001). Cloud condensation nuclei in the Amazon Basin: “Marine” conditions over a continent? Geophysical Research Letters, 28, 2807–2810.

    Article  Google Scholar 

  • Rukzon, S., & Chindaprasirt, P. (2012). Utilization of bagasse ash in high-strength concrete. Materials & Design, 34, 45–50.

    Article  CAS  Google Scholar 

  • Sahu, A. K., Mall, I. D., & Srivastava, V. C. (2007). Studies on the adsorption of furfural from aqueous solution onto low-cost bagasse fly ash. Chemical Engineering Communications, 195, 316–335.

    Article  CAS  Google Scholar 

  • Sahu, S., Patel, B. H. M., Dutt, T., & Verma, A. K. (2014). Effect of graded level of sugarcane press mud in ration on carcass characteristics of crossbred (Landrace x Desi) pigs. Indian Journal of Animal Sciences, 84, 1109–1112.

    CAS  Google Scholar 

  • Said, G., Khan, M. J., Usman, K., & Rehman, H. (2010). Impact of press mud as organic amendment on physico-chemical characteristics of calcareous soil. Sarhad Journal of Agriculture, 26, 565–570.

    Google Scholar 

  • Santos, J. C., Carvalho, W., Silva, S. S., & Converti, A. (2003). Xylitol production from sugarcane bagasse hydrolyzate in fluidized bed reactor. Effect of air flowrate. Biotechnology Progress, 19, 1210–1215.

    Article  CAS  Google Scholar 

  • Santos, J. C., Converti, A., de Carvalho, W., Mussatto, S. I., & da Silva, S. S. (2005). Influence of aeration rate and carrier concentration on xylitol production from sugarcane bagasse hydrolyzate in immobilized-cell fluidized bed reactor. Process Biochemistry, 40, 113–118.

    Article  CAS  Google Scholar 

  • Saranraj, P., & Stella, D. (2012). Vermicomposting and its importance in improvement of soil nutrients and agricultural crops. Novus Natural Science Research, 1, 14–23.

    Google Scholar 

  • Saranraj, P., & Stella, D. (2014). Composting of sugar mill wastes: a review. World Applied Sciences Journal, 31, 2029–2044.

    CAS  Google Scholar 

  • Shah, B., Tailor, R., & Shah, A. (2011). Equilibrium, kinetics, and breakthrough curve of phenol sorption on zeolitic material derived from BFA. Journal of Dispersion Science and Technology, 33, 41–51.

    Article  CAS  Google Scholar 

  • Shah, B., Mistry, C., & Shah, A. (2013a). Seizure modeling of Pb(II) and Cd(II) from aqueous solution by chemically modified sugarcane bagasse fly ash: isotherms, kinetics, and column study. Environmental Science & Pollution Research, 20, 2193–2209.

    Article  CAS  Google Scholar 

  • Shah, B. A., Shah, A. V., Patel, H. D., & Mistry, C. B. (2013b). High-value zeolitic material from bagasse fly ash: utilization for dye elimination. Water Environment Research, 85, 558–567.

    Article  CAS  Google Scholar 

  • Shankaraiah, C., & Murthy, K. N. K. (2005). Effect of enriched pressmud cake on growth, yield and quality of sugarcane. Sugar Technology, 7, 1–4.

    Article  Google Scholar 

  • Sherman, R. L. (2011). Vermicomposting for businesses and institutions. Boca Raton: CRC Press.

    Google Scholar 

  • Shurpali, N. J., HyvÖNen, N. P., Huttunen, J. T., Clement, R. J., Reichstein, M., NykÄNen, H., Biasi, C., & Martikainen, P. J. (2009). Cultivation of a perennial grass for bioenergy on a boreal organic soil–carbon sink or source? GCB Bioenergy, 1, 35–50.

    Article  CAS  Google Scholar 

  • Shurpali, N. J., Biasi, C., Jokinen, S., Hyvönen, N., & Martikainen, P. J. (2013). Linking water vapor and CO2 exchange from a perennial bioenergy crop on a drained organic soil in eastern Finland. Agricultural and Forest Meteorology, 168, 47–58.

    Article  Google Scholar 

  • Singh, N. B., Singh, V. D., & Rai, S. (2000). Hydration of bagasse ash-blended portland cement. Cement and Concrete Research, 30, 1485–1488.

    Article  CAS  Google Scholar 

  • Singh, K. P., Suman, A., Singh, P. N., & Lal, M. (2007). Yield and soil nutrient balance of a sugarcane plant–ratoon system with conventional and organic nutrient management in sub-tropical India. Nutrient Cycling in Agroecosystems, 79, 209–219.

    Article  Google Scholar 

  • Singh, M. K., Kesari, K. K., & Behari, J. (2010). Ultrasonic irradiation of activated industrial sludge. International Journal of Environment and Pollution, 43, 52–65.

    Article  CAS  Google Scholar 

  • Smith, K. (1975). Principle of applied climatology London, Mc. Hill. Bk. Com. (UK) Ltd.

  • Soni, A. B., Keshav, A., Verma, V., & Suresh, S. (2012). Removal of glycolic acid from aqueous solution using bagasse flyash. International Journal of Environmental Research, 6, 297–308.

    CAS  Google Scholar 

  • Souza, A. E., Teixeira, S. R., Santos, G. T. A., Costa, F. B., & Longo, E. (2011). Reuse of sugarcane bagasse ash (SCBA) to produce ceramic materials. Journal of Environmental Management, 92, 2774–2780.

    Article  CAS  Google Scholar 

  • Srivastava, V. C., Prasad, B., Mishra, I. M., Mall, I. D., & Swamy, M. M. (2008). Prediction of breakthrough curves for sorptive removal of phenol by bagasse fly ash packed Bed. Industrial & Engineering Chemistry Research, 47, 1603–1613.

    Article  CAS  Google Scholar 

  • Streets, D. G., Gupta, S., Waldhoff, S. T., Wang, M. Q., Bond, T. C., & Yiyun, B. (2001). Black carbon emissions in China. Atmospheric Environment, 35, 4281–4296.

    Article  CAS  Google Scholar 

  • Subramanian, S., Pande, G., De Weireld, G., Giraudon, J.-M., Lamonier, J.-F., & Batra, V. S. (2013). Sugarcane bagasse fly ash as an attractive agro-industry source for VOC removal on porous carbon. Industrial Crops and Products, 49, 108–116.

    Article  CAS  Google Scholar 

  • Suthar, S. (2012). Earthworm production in cattle dung vermicomposting system under different stocking density loads. Environmental Science & Pollution Research, 19, 748–755.

    Article  CAS  Google Scholar 

  • Tahir, H., Sultan, M., Akhtar, N., Hameed, U., & Abid, T. (2012). Application of natural and modified sugar cane bagasse for the removal of dye from aqueous solution. Journal of Saudi Chemical Society. doi:10.1016/j.jscs.2012.09.007.

    Google Scholar 

  • Tajernia, H., Ebadi, T., Nasernejad, B., & Ghafori, M. (2014). Arsenic removal from water by sugarcane bagasse: an application of response surface methodology (RSM). Water, Air, & Soil Pollution, 225, 1–22.

    Article  CAS  Google Scholar 

  • Teixeira, S. R., De Souza, A. E., De Almeida Santos, G. T., Vilche Peña, A. F., & Miguel, Á. G. (2008). Sugarcane bagasse ash as a potential quartz replacement in red ceramic. Journal of the American Ceramic Society, 91, 1883–1887.

    Article  CAS  Google Scholar 

  • Teixeira, S. R., Magalhães, R. S., Arenales, A., Souza, A. E., Romero, M., & Rincón, J. M. (2014). Valorization of sugarcane bagasse ash: producing glass-ceramic materials. Journal of Environmental Management, 134, 15–19.

    Article  CAS  Google Scholar 

  • Tominaga, T. T., Cassaro, F. A. M., Bacchi, O. O. S., Reichardt, K., Oliveira, J. C. M., & Timm, L. C. (2002). Variability of soil water content and bulk density in a sugarcane field. Soil Research, 40, 604–614.

    Article  Google Scholar 

  • Umar, Z., & Sharif, F. (2013). Use of earthworms for composting of sugar industry waste. Biologia, 59, 115–123.

    Google Scholar 

  • van Hove, L. W. A., Bossen, M. E., de Bok, F. A. M., & Hooijmaijers, C. A. M. (1999). The uptake of O3 by poplar leaves: the impact of a long-term exposure to low O3-concentrations. Atmospheric Environment, 33, 907–917.

    Article  Google Scholar 

  • Wasewar, K. L., Prasad, B., & Gulipalli, S. (2009). Adsorption of selenium using bagasse fly ash. CLEAN Soil, Air, Water, 37, 534–543.

    Article  CAS  Google Scholar 

  • WCDE (1987) 42/187. Report of the world commission on environment and development, United Nations General Assembly, 96th plenary meeting, available at www.un.org/documents/ga/res/42/ares42-187.htm.

  • Wei, Y.-A., & Xu, Y.-j. (2004). Eco-friendly management of sugar industry effluents in Guangxi, China. Sugar Technology, 6, 285–290.

    Article  CAS  Google Scholar 

  • Wood, C. (2003). Environmental impact assessment: a comparative review. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Yadav, R. L., & Solomon, S. (2006). Potential of developing sugarcane by-product based industries in India. Sugar Technology, 8, 104–111.

    Article  Google Scholar 

  • Yadav, R. L., & Subba Rao, A. V. M. (2001). Atlas of cropping systems in India, PDCSR bulletin No 2001–2. Meerut: Project Directorate for Cropping Systems Research.

    Google Scholar 

  • Yadav, L. S., Mishra, B. K., Kumar, A., & Paul, K. K. (2014). Arsenic removal using bagasse fly ash-iron coated and sponge iron char. Journal of Environmental Chemical Engineering, 2, 1467–1473.

    Article  CAS  Google Scholar 

  • Yang, S.-D., Liu, J.-X., Wu, J., Tan, H.-W., & Li, Y.-R. (2013). Effects of vinasse and press mud application on the biological properties of soils and productivity of sugarcane. Sugar Technology, 15, 152–158.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amit Bhatnagar, Kavindra Kumar Kesari or Narasinha Shurpali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatnagar, A., Kesari, K.K. & Shurpali, N. Multidisciplinary Approaches to Handling Wastes in Sugar Industries. Water Air Soil Pollut 227, 11 (2016). https://doi.org/10.1007/s11270-015-2705-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2705-y

Keywords

Profiles

  1. Narasinha Shurpali