Optimization of a Fungally Bioaugmented Biomixture for Carbofuran Removal in On-Farm Biopurification Systems

  • Karla Ruiz-Hidalgo
  • Juan Salvador Chin-Pampillo
  • Mario Masís-Mora
  • Elizabeth Carazo-Rojas
  • Carlos E. Rodríguez-Rodríguez


Biomixtures comprise the active part of biopurification systems (BPS) for the removal of pesticide-containing wastewater from agricultural origin. Considering that biomixtures contain an important amount of lignocellulosic substrates, their bioaugmentation with degrading ligninolytic fungi represents a promising way to improve BPS. The fungus Trametes versicolor was employed for the bioaugmentation of rice husk-compost-soil (GCS) biomixtures in order to optimize the removal of the highly toxic insecticide/nematicide carbofuran (CFN). Composition of biomixtures has not been optimized before, and usually, a volumetric composition of 50:25:25 (lignocellulosic substrate:humic component:soil) is employed. Optimization of the biomixture composition was performed with a central composite design, using the volumetric content of rice husk (pre-colonized by the fungus) and the volumetric ratio compost/soil as design variables. Performance of biomixtures was comprehensively assayed considering CFN removal, the production of toxic transformation products (3-hydroxycarbofuran/3-ketocarbofuran), the ability to mineralize [14C]carbofuran, and the residual toxicity in the matrix. According to the models, the optimal volumetric composition of the GCS biomixture is 30:43:27, which maximizes removal and mineralization rate, and minimizes the accumulation of transformation products. Results support the value of assessing new biomixture formulations according to the target pesticide in order to obtain their optimal performance, before their use in BPS.


Biopurification system Pesticides Bioaugmentation Fungi Toxicity Degradation 



This work was supported by the Vicerrectoría de Investigación, Universidad de Costa Rica (projects 802-B2-046, 802-B4-503, and 802-B4-609), the Costa Rican Ministry of Science, Technology and Telecommunications, MICITT (project FI-093-13/802-B4-503), and the Joint FAO/IAEA (project TC COS5/029).


  1. Bending, G. D., Friloux, M., & Walker, A. (2002). Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiology Letters, 212, 59–63.CrossRefGoogle Scholar
  2. Castillo, M. P., Torstensson, L., & Stenström, J. (2008). Biobeds for environmental protection from pesticide use—a review. Journal of Agricultural and Food Chemistry, 56, 6206–6219.CrossRefGoogle Scholar
  3. Chin-Pampillo, J. S., Ruiz-Hidalgo, K., Masís-Mora, M., Carazo-Rojas, E., & Rodríguez-Rodríguez, C. E. (2015). Adaptation of biomixtures for carbofuran degradation in on-farm biopurification systems in tropical regions. Environmental Science and Pollution Research, 22, 9839–9848.CrossRefGoogle Scholar
  4. Coppola, L., Castillo, M. P., Monaci, E., & Vischetti, C. (2007). Adaptation of the biobed composition for chlorpyrifos degradation to southern Europe conditions. Journal of Agricultural and Food Chemistry, 55, 396–401.CrossRefGoogle Scholar
  5. Coppola, L., Castillo, M. P., & Vischetti, C. (2011). Degradation of isoproturon and bentazone in peat- and compost-based biomixtures. Pest Management Science, 67, 107–113.CrossRefGoogle Scholar
  6. Cruz-Morató, C., Ferrando-Climent, L., Rodríguez-Mozaz, S., Barceló, D., Marco-Urrea, E., Vicent, T., & Sarrà, M. (2013). Degradation of pharmaceuticals in non-sterile urban wastewater by Trametes versicolor in a fluidized bed bioreactor. Water Research, 47, 5200–5210.CrossRefGoogle Scholar
  7. D’Annibale, A., Ricci, M., Leonardi, V., Quaratino, D., Mincione, E., & Petruccioli, M. (2005). Degradation of aromatic hydrocarbons by white-rot fungi in a historically contaminated soil. Biotechnology & Bioengineering, 90, 723–731.CrossRefGoogle Scholar
  8. Damalas, C. A., & Eleftherohorinos, I. G. (2011). Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health, 8, 1402–1419.CrossRefGoogle Scholar
  9. de Roffignac, L., Cattan, P., Mailloux, J., Herzog, D., & Le Bellec, F. (2008). Efficiency of a bagasse substrate in a biological bed system for the degradation of glyphosate, malathion and lambda-cyhalothrin under tropical climate conditions. Pest Management Science, 64, 1303–1313.Google Scholar
  10. De Wilde, T., Spanoghe, P., Debaer, C., Ryckeboer, J., Springael, D., & Jaeken, P. (2007). Overview of on-farm bioremediation systems to reduce the occurrence of point source contamination. Pest Management Science, 63, 111–128.CrossRefGoogle Scholar
  11. EPA. (2001). Methods for collection, storage and manipulation of sediments for chemical and toxicological analyses: technical manual (EPA-823-B-01-002). Washington, DC: Office of Water (4305).Google Scholar
  12. EPA. (2002). Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms (EPA-821-R-02-012). Washington, DC: Office of Water (4303T).Google Scholar
  13. Fogg, P., Boxall, A. B. A., Walker, A., & Jukes, A. A. (2003). Pesticide degradation in a “biobed” composting substrate. Pest Management Science, 59, 527–537.CrossRefGoogle Scholar
  14. Font Segura, X., Gabarrell Durany, X., Ramos Lozano, D., & Vicent Huguet, T. (1993). Detoxification pretreatment of black liquor derived from non-wood feedstock with white-rot fungi. Environmental Technology, 14, 681–687.CrossRefGoogle Scholar
  15. Fragoeiro, S., & Magan, N. (2008). Impact of Trametes versicolor and Phanerochaete chrysosporium on differential breakdown of pesticide mixtures in soil microcosms at two water potentials and associated respiration and enzyme activity. International Biodeterioration and Biodegradation, 62, 376–383.CrossRefGoogle Scholar
  16. Gupta, R. C. (1994). Carbofuran toxicity. Journal of Toxicology and Environmental Health, 43, 383–418.CrossRefGoogle Scholar
  17. Karanasios, E., Tsiropoulos, N. G., Karpouzas, D. G., & Ehaliotis, C. (2010). Degradation and adsorption of pesticides in compost-based biomixtures as potential substrates for biobeds in southern Europe. Journal of Agricultural and Food Chemistry, 58, 9147–9156.CrossRefGoogle Scholar
  18. Kravvariti, K., Tsiropoulos, N. G., & Karpouzas, D. G. (2010). Degradation and adsorption of terbuthylazine and chlorpyrifos in biobed biomixtures from composted cotton crop residues. Pest Management Science, 66, 1122–1128.CrossRefGoogle Scholar
  19. Madrigal-Zúñiga, K., Ruiz-Hidalgo, K., Chin-Pampillo, J. S., Masís-Mora, M., Castro-Gutiérrez, V., & Rodríguez-Rodríguez, C. E. (2015). Fungal bioaugmentation of two rice husk-based biomixtures for the removal of carbofuran in on-farm biopurification systems. Biology and Fertility of Soils. doi: 10.1007/s00374-015-1071-7.Google Scholar
  20. Mir-Tutusaus, J. A., Masís-Mora, M., Corcellas, C., Eljarrat, E., Barceló, D., Sarrà, M., Caminal, G., Vicent, T., & Rodríguez-Rodríguez, C. E. (2014). Degradation of selected agrochemicals by the white-rot fungus Trametes versicolor. Science of the Total Environment, 500–501, 235–242.CrossRefGoogle Scholar
  21. Novotný, Č., Erbanová, P., Šašek, V., Kubátová, A., Cajthaml, T., Lang, E., Krahl, J., & Zadražil, F. (1999). Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white rot fungi. Biodegradation, 10, 159–168.CrossRefGoogle Scholar
  22. Rigas, F., Papadopoulou, K., Dritsa, V., & Doulia, D. (2007). Bioremediation of a soil contaminated by lindane utilizing the fungus Ganoderma australe via response surface methodology. Journal of Hazardous Materials, 140, 325–332.CrossRefGoogle Scholar
  23. Rodríguez-Rodríguez, C. E., Jelić, A., Llorca, M., Farré, M., Caminal, G., Petrović, M., Barceló, D., & Vicent, T. (2011). Solid-phase treatment with the fungus Trametes versicolor substantially reduces pharmaceutical concentrations and toxicity from sewage sludge. Bioresource Technology, 102, 5602–5608.CrossRefGoogle Scholar
  24. Rodríguez-Rodríguez, C. E., Jelić, A., Pereira, M. A., Sousa, D. Z., Petrović, M., Alves, M. M., Barceló, D., Caminal, G., & Vicent, T. (2012). Bioaugmentation of sewage sludge with Trametes versicolor in solid-phase biopiles produces degradation of pharmaceuticals and affects microbial communities. Environmental Science & Technology, 46, 12012–12020.CrossRefGoogle Scholar
  25. Rodríguez-Rodríguez, C. E., Castro Gutiérrez, V., Chin-Pampillo, J. S., & Ruiz-Hidalgo, K. (2013). On-farm biopurification systems: role of white rot fungi in depuration of pesticide containing wastewaters. FEMS Microbiology Letters, 345, 1–12.CrossRefGoogle Scholar
  26. Rodríguez-Rodríguez, C. E., Lucas, D., Barón, E., Gago-Ferrero, P., Molins-Delgado, D., Rodríguez-Mozaz, S., Eljarrat, E., Díaz-Cruz, M. S., Barceló, D., Caminal, G., & Vicent, T. (2014). Re-inoculation strategies enhance the degradation of emerging pollutants by fungal bioaugmentation in sewage sludge. Bioresource Technology, 168, 180–189.CrossRefGoogle Scholar
  27. Ruiz-Hidalgo, K., Chin-Pampillo, J. S., Masís-Mora, M., Carazo, R. E., & Rodríguez-Rodríguez, C. E. (2014). Degradation of carbofuran by Trametes versicolor in rice husk as a potential lignocellulosic substrate for biomixtures: from mineralization to toxicity reduction. Process Biochemistry, 49, 2266–2271.CrossRefGoogle Scholar
  28. Sniegowski, K., Bers, K., Van Goetem, K., Ryckeboer, J., Jaeken, P., Spanoghe, P., & Springael, D. (2012). Minimal pesticide-primed soil inoculum density to secure maximum pesticide degradation efficiency in on-farm biopurification systems. Chemosphere, 88, 1114–1118.CrossRefGoogle Scholar
  29. Tortella, G. R., Rubilar, O., Cea, M., Wulff, C., Martínez, O., & Diez, M. C. (2010). Biostimulation of agricultural biobeds with NPK fertilizer on chlorpyrifos degradation to avoid soil and water contamination. Journal of Soil Science and Plant Nutrition, 10, 464–475.CrossRefGoogle Scholar
  30. Tortella, G. R., Rubilar, O., Castillo, M. P., Cea, M., Mella-Herrera, R., & Diez, M. C. (2012). Chlorpyrifos degradation in a biomixture of biobed at different maturity stages. Chemosphere, 88, 224–228.CrossRefGoogle Scholar
  31. Tortella, G. R., Durán, N., Rubilar, O., Parada, M., & Diez, M. C. (2013a). Are white-rot fungi a real biotechnological option for the improvement of environmental health? Critical Reviews in Biotechnology, 35, 165–172.CrossRefGoogle Scholar
  32. Tortella, G. R., Rubilar, O., Cea, M., Briceño, G., Quiroz, A., Diez, M. C., & Parra, L. (2013b). Natural wastes rich in terpenes and their relevance in the matrix of an on-farm biopurification system for the degradation of atrazine. International Biodeterioration & Biodegradation, 85, 8–15.CrossRefGoogle Scholar
  33. Tortella, G. R., Rubilar, O., Stenström, J., Cea, M., Briceño, G., Quiroz, A., Diez, M. C., & Parra, L. (2013c). Using volatile organic compounds to enhance atrazine biodegradation in a biobed system. Biodegradation, 24, 711–720.CrossRefGoogle Scholar
  34. Urrutia, C., Rubilar, O., Tortella, G. R., & Diez, M. C. (2013). Degradation of pesticide mixture on modified matrix of a biopurification system with alternatives lignocellulosic wastes. Chemosphere, 92, 1361–1366.CrossRefGoogle Scholar
  35. Verhagen, P., De Gelder, L., & Boon, N. (2013). Inoculation with a mixed degrading culture improves the pesticide removal of an on-farm biopurification system. Current Microbiology, 67, 466–471.CrossRefGoogle Scholar
  36. Verhagen, P., Destino, C., Boon, N., & De Gelder, L. (2015). Spatial heterogeneity in degradation characteristics and microbial community composition of pesticide biopurification systems. Journal of Applied Microbiology, 118, 368–378.CrossRefGoogle Scholar
  37. von Wirén-Lehr, S., Castillo, M. P., Torstensson, L., & Scheunert, I. (2001). Degradation of isoproturon in biobeds. Biology and Fertility of Soils, 33, 535–540.CrossRefGoogle Scholar
  38. Yang, S., Hai, F. I., Nghiem, L. D., Price, W. E., Roddick, F., Moreira, M. T., & Magram, S. F. (2013). Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes: a critical review. Bioresource Technology, 141, 97–108.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Karla Ruiz-Hidalgo
    • 1
  • Juan Salvador Chin-Pampillo
    • 1
  • Mario Masís-Mora
    • 1
  • Elizabeth Carazo-Rojas
    • 1
  • Carlos E. Rodríguez-Rodríguez
    • 1
  1. 1.Research Center of Environmental Contamination (CICA)Universidad de Costa RicaSan JoséCosta Rica

Personalised recommendations