Skip to main content

Atmospheric Phosphorus and Nitrogen Originating in China: Forest Deposition and Infiltration of Stream Water in Japan

Abstract

We analysed nutrients and basic ions (Na, Cl, K, Mg, Si, Ca, and SO4) for a period of 1 year, including every precipitation event, and sampled stream water every 2 weeks from a forest catchment in Shimane Prefecture, Japan. Backward-trajectory analysis revealed that some air masses originated within Japan, but did not affect the precipitation chemistry. Air masses originating from northern China were positively correlated with nutrients and all basic ions. Concentrations of ammonium and dissolved organic nitrogen were much lower in stream water than in precipitation, while those of nitrate and particulate nitrogen were similar in stream water and precipitation. Unlike nitrogen, the dissolved phosphorus concentration was much higher in stream water than in precipitation. Both phosphate and dissolved organic phosphorus (DOP) levels were higher in stream water than in precipitation. Particulate phosphorus (PP) concentrations were very similar in precipitation and stream water. PP showed stronger correlations than potassium with suspended solids (SS) and flow rate, while phosphate and DOP were more strongly correlated with potassium than with SS or flow rate. Stream silica concentrations were not correlated with phosphate but did exhibit a significant negative correlation with DOP. Neither phosphate nor DOP was correlated with calcium. These results suggest that phosphorus is not leaching with silica or calcium as a paired cation, but rather with potassium in this area. Lower nitrogen concentrations in stream water than in precipitation can be attributed to an enhanced uptake of nitrogen by forest soils owing to the increased atmospheric deposition of phosphorus.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bendschneider, K., & Robinson, R. J. (1952). A new spectrophotometric method for the determination of nitrite in sea water. Journal of Marine Research, 11(1), 87–96.

    CAS  Google Scholar 

  2. Briggs, R. D., Hornbeck, J. W., Smith, C. T., Lemin, R. C., Jr., & McCormack, M. L., Jr. (2000). Long-term effects of forest management on nutrient cycling in spruce-fir forests. Forest Ecology and Management, 138(1–3), 285–299.

    Article  Google Scholar 

  3. Casareto, B. E., Suzuki, Y., Okada, K., & Morita, M. (1996). Biological micro-particles in rain water. Geophysical Research Letters, 23(2), 173–176.

    Article  Google Scholar 

  4. Chiwa, M., Onikura, N., Ide, J., & Kume, A. (2011). Impact of N-saturated upland forests on downstream N pollution in the Tatara River basin, Japan. Ecosystems, 15(2), 230–241.

    Article  Google Scholar 

  5. Corriveau, J., Chambers, P. A., & Culp, J. M. (2013). Seasonal variation in nutrient export along streams in the Northern Great Plains. Water, Air, and Soil Pollution. doi:10.1007/s11270-013-1594-1.

    Google Scholar 

  6. Cotner, J. B., & Wetzel, R. G. (1992). Uptake of dissolved inorganic and organic phosphorus compounds by phytoplankton and bacterioplankton. Limnology and Oceanography, 37(2), 232–243.

    CAS  Article  Google Scholar 

  7. Ebina, J., Tsutsui, T., & Shirai, T. (1983). Simultaneous determination of total nitrogen and total phosphorous in water using peroxodisulphate oxidation. Water Research, 17(12), 1721–1726.

    CAS  Article  Google Scholar 

  8. Figueiredo, J. A., Menor, E. A., Taboada-Castro, M. T., Taboada-Castro, M. M., Rodríguez-Blanco, M. L., & Braga, E. S. (2014). Using hydrogeochemical signatures of stream water to assess pathways for rainfall events: towards a predictive model. Hydrological Processes, 28(3), 2302–2311.

    Article  Google Scholar 

  9. Fukuzaki, N., Ohizumi, T., & Matsuda, K. (2001). Geographical and temporal variations of chemical constituents in winter precipitation collected in the areas along the coast of the Sea of Japan. In K. Satake, J. Shindo, T. Takamatsu, T. Nakano, S. Aoki, T. Fukuyama, et al. (Eds.), Acid rain 2000 (pp. 1673–1678). Dordrecht: Springer Netherlands.

    Chapter  Google Scholar 

  10. Ganguly, D., Robin, R. S., Vardhan, K. V., Muduli, P. R., Abhilash, K. R., Patra, S., et al. (2013). Variable response of two tropical phytoplankton species at different salinity and nutrient condition. Journal of Experimental Marine Biology and Ecology, 440, 244–249.

    Article  Google Scholar 

  11. Gökbulak, F., Serengil, Y., Özhan, S., Özyuvacı, N., & Balcı, A. N. (2008). Relationship between streamflow and nutrient and sediment losses from an oak-beech forest watershed during an 18-year long monitoring study in Turkey. European Journal of Forest Research, 127(3), 203–212.

    Article  Google Scholar 

  12. Hartmann, J., Kunimatsu, T., & Levy, J. K. (2008). The impact of Eurasian dust storms and anthropogenic emissions on atmospheric nutrient deposition rates in forested Japanese catchments and adjacent regional seas. Global and Planetary Change, 61(3–4), 117–134.

    Article  Google Scholar 

  13. Hillebrand, H., Steinert, G., Boersma, M., Malzahn, A., Meunier, C. L., Plum, C., et al. (2013). Goldman revisited: faster-growing phytoplankton has lower N:P and lower stoichiometric flexibility. Limnology and Oceanography, 58(6), 2076–2088.

    CAS  Article  Google Scholar 

  14. Japan Meteorological Agency (2014). “Yearly meteorological data of Matsue”, http://www.data.jma.go.jp/obd/stats/etrn/view/annually_s.php?prec_no=68&block_no=47741&year=&month=&day=&view=. Accessed 2nd Feb 2014).

  15. Kamiya, H., Kano, Y., Mishima, K., Yoshioka, K., Mitamura, O., & Ishitobi, Y. (2008). Estimation of long-term variation in nutrient loads from the Hii River by comparing the change in observed and calculated loads in the catchments. Landscape and Ecological Engineering, 4(1), 39–46.

    Article  Google Scholar 

  16. Klimont, Z., Cofala, J., Schöpp, W., Amann, M., Streets, D. G., Ichikawa, Y., et al. (2001). Projections of SO2, NOx, NH3 and VOC emissions in East Asia up to 2030. Water, Air, and Soil Pollution, 130(1–4), 193–198.

    Article  Google Scholar 

  17. Koga, M., & Yoshimura, K. (2012). Regulation of the dissolved phosphate concentration of a mountainous stream, Kitakyushu, Southwestern Japan. Journal of Environmental Monitoring, 14(7), 1951–1958.

    CAS  Article  Google Scholar 

  18. Lim, J. Y., & Chun, Y. (2006). The characteristics of Asian Dust events in northeast Asia during the springtime from 1993 to 2004. Global and Planetary Change, 52(1–4), 231–247.

    Article  Google Scholar 

  19. Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., et al. (2013). Enhanced nitrogen deposition over China. Nature, 494(7438), 459–462.

    CAS  Article  Google Scholar 

  20. Liu, X., Xu, W., Pan, Y., & Du, E. (2015). Liu et al. suspect that Zhu et al. (2015) may have underestimated dissolved organic nitrogen (N) but overestimated total particulate N in wet deposition in China. Science of the Total Environment, 520, 300–301.

    CAS  Article  Google Scholar 

  21. Luo, J., Wang, X., Yang, H., Yu, J. Z., Yang, L., & Qin, B. (2011). Atmospheric phosphorus in the northern part of Lake Taihu, China. Chemosphere, 84(6), 785–791.

    CAS  Article  Google Scholar 

  22. Matsumoto, J., Takahashi, K., Matsumi, Y., Yabushita, A., Shimizu, A., Matsui, I., et al. (2006). Scavenging of pollutant acid substances by Asian mineral dust particles. Geophysical Research Letters, 3(7), L07816.

    Google Scholar 

  23. Miyazako, T., Tabayashi, Y., Ohshiro, H., Koyama, Y., Nakashima, Y., Sato, S., et al. (2014). Transboundary nitrogen pollution from continental China to a river that flows into the Sea of Japan. Japanese Journal of Limnology, 75(1), 27–34.

    CAS  Article  Google Scholar 

  24. Miyazako, T., Kamiya, H., Goto, T., Koyama, Y., Nakashima, Y., Sato, S., et al. (2015). Long-term trends in nitrogen and phosphorus concentrations in the Hii River as influenced by atmospheric deposition from East Asia. Limnology and Oceanography, 60(2), 629–640.

    CAS  Article  Google Scholar 

  25. Némery, J., Garnier, J., & Morel, C. (2005). Phosphorus budget in the Marne Watershed (France): urban vs. diffuse sources, dissolved vs. particulate forms. Biogeochemistry, 72(1), 35–66.

    Article  Google Scholar 

  26. Ohte, N., Sebestyen, S. D., Shanley, J. B., Doctor, D. H., Kendall, C., Wankel, S. D., et al. (2004). Tracing sources of nitrate in snowmelt runoff using a high-resolution isotopic technique. Geophysical Research Letters. doi:10.1029/2004GL020908.

    Google Scholar 

  27. Piirainen, S., Finér, L., Mannerkoski, H., & Starr, M. (2004). Effects of forest clear-cutting on the sulphur, phosphorus and base cations fluxes through podzolic soil horizons. Biogeochemistry, 69(3), 405–424.

    CAS  Article  Google Scholar 

  28. Poste, A. E., Hecky, R. E., & Guildford, S. J. (2013). Phosphorus enrichment and carbon depletion contribute to high Microcystis biomass and microcystin concentrations in Ugandan lakes. Limnology and Oceanography, 58(3), 1075–1088.

    CAS  Article  Google Scholar 

  29. Rolph, G. D., Ngan, F., & Draxler, R. R. (2014). Modeling the fallout from stabilized nuclear clouds using the HYSPLIT atmospheric dispersion model. Journal of Environmental Radioactivity, 136, 41–55.

    CAS  Article  Google Scholar 

  30. Savoie, D. L., Prospero, J. M., Arimoto, R., & Duce, R. A. (1994). Non-sea-salt sulfate and methanesulfonate at American Samoa. Journal of Geophysical Research, 99(D2), 3587–3596.

    CAS  Article  Google Scholar 

  31. Scheiner, D. (1976). Determination of ammonia and Kjeldahl nitrogen by indophenol method. Water Research, 10(1), 31–36.

    CAS  Article  Google Scholar 

  32. Schindler, D. W., Hecky, R. E., Findlay, D. L., Stainton, M. P., Parker, B. R., Paterson, M. J., et al. (2008). Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of 37 year whole ecosystem experiment. Proceedings of the National Academy of Sciences of the United States of America, 105(32), 11254–11258.

    CAS  Article  Google Scholar 

  33. Spoelstra, J., Schiff, S. L., Elgood, R. J., Semkin, R. G., & Jeffries, D. S. (2001). Tracing the sources of exported nitrate in the Turkey Lakes watershed using 15N/14N and 18O/16O isotopic ratios. Ecosystems, 4(6), 536–544.

    CAS  Article  Google Scholar 

  34. Tsukuda, S., Sugiyama, M., Harita, Y., & Nishimura, K. (2006). Atmospheric phosphorus deposition in Ashiu, Central Japan – source apportionment for the estimation of true input to a terrestrial ecosystem. Biogeochemistry, 77(1), 117–138.

    CAS  Article  Google Scholar 

  35. Wakamatsu, T., Konohira, E., Shindo, J., Yoshioka, T., Okamoto, K., Itaya, A., et al. (2006). Dissolved inorganic phosphate concentration in stream water in Japan and factors controlling the concentration. Journal of Japan Society on Water Environment, 29(11), 679–686.

    CAS  Article  Google Scholar 

  36. Wood, E. D., Armstrong, F. A. J., & Richards, F. A. (1967). Determination of nitrate in sea water by cadmium-copper reduction to nitrite. Journal of the Marine Biological Association of the United Kingdom, 47(1), 23–31.

    CAS  Article  Google Scholar 

  37. Yoshioka, K., Kamiya, H., Kano, Y., Saki, Y., Yamamuro, M., & Ishitobi, Y. (2009). The relationship between seasonal variations of total-nitrogen and total-phosphorus in rainfall and air mass advection paths in Matsue, Japan. Atmospheric Environment, 43(22–23), 3496–3501.

    CAS  Article  Google Scholar 

  38. Zhang, Z., Fukushima, T., Shi, P., Tao, F., Onda, Y., Gomi, T., et al. (2008). Baseflow concentrations of nitrogen and phosphorus in forested headwaters in Japan. Science of the Total Environment, 402(1), 113–122.

    CAS  Article  Google Scholar 

  39. Zhu, J., He, N., Wang, Q., Yuan, G., Wen, D., Yu, G., et al. (2015). The composition, spatial patterns, and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems. Science of the Total Environment, 511, 777–785.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Misato Hironaka helped with data processing and the illustration of figures. This study was partly supported by a grant from the River Works Technology Research and Development Program of the Japanese Ministry of Land, Infrastructure, Transport, and Tourism.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Masumi Yamamuro.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tabayashi, Y., Kamiya, H., Godo, T. et al. Atmospheric Phosphorus and Nitrogen Originating in China: Forest Deposition and Infiltration of Stream Water in Japan. Water Air Soil Pollut 226, 385 (2015). https://doi.org/10.1007/s11270-015-2650-9

Download citation

Keywords

  • Precipitation
  • Potassium
  • Backward trajectory
  • Atmospheric deposition