Skip to main content
Log in

A Combined Electrocoagulation-Electroperoxidation Process for the Tertiary Treatment of Domestic Wastewaters

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The aim of this study is to develop a process that combines electrocoagulation and electroperoxidation (EC-EP) and to evaluate its performance in treating domestic wastewaters (DWW). Electrolysis was performed using a parallelepipedic electrolytic cell (0.5 L) containing one sacrificial anode (mild steel or aluminum) and one cathode (vitreous carbon). The effects of the treatment time, current density, and type of anode electrode on the process performance were examined. The experimental results revealed that a current density of 4.0 mA cm−2 was beneficial for DWW treatment. There was a decrease in the chemical oxygen demand (COD), suspended solid (SS), turbidity, color, and total phosphorus (Ptot) by 67 ± 9, 98 ± 2, 55 ± 10, 61 ± 9, and 97 ± 0 %, respectively, for a treatment time of 60 min in the electrolysis cell in the presence of mild steel (anode) and vitreous carbon (cathode) electrodes. The process was also determined to be effective for removing pathogens (99 ± 1 % removal), such as fecal coliform (the log-inactivation was higher than 2 units).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abegglen, C., Ospelt, M., & Siegrist, H. (2008). Biological nutrient removal in a small-scale MBR treating household wastewater. Water Research, 42, 338–346.

    Article  CAS  Google Scholar 

  • Asselin, M., Drogui, P., Benmoussa, H., & Blais, J.-F. (2008). Effectiveness of electrocoagulation process in removing organic compounds from slaughterhouse wastewater using monopolar and bipolar electrolytic cells. Chemosphere, 72, 1727–1733.

    Article  CAS  Google Scholar 

  • Brillas, E., & Casado, J. (2002). Aniline degradation by Electro-Fenton® and peroxi-coagulation processes using a flow reactor for wastewater treatment. Chemosphere, 47, 241–248.

    Article  CAS  Google Scholar 

  • Brillas, E., Arias, C., Cabot, P., Centellas, F., Garrido, J., & Rodríguez, R. (2006). Degradation of organic contaminants by advanced electrochemical oxidation methods. Portugaliae Electrochimica Acta, 24, 159.

    Article  CAS  Google Scholar 

  • Brillas, E., Sirés, I., & Oturan, M. A. (2009). Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chemical Reviews, 109, 6570–6631.

    Article  CAS  Google Scholar 

  • CEAEQ. (2003). Détermination de la demande chimique en oxygène dans les effluents: méthode de reflux en système fermé suivi d’un dosage par colorimétrie avec le bichromate de potassium, MA. 315-DCO 1.0 (p. 14). Québec: Centre d’Expertise en Analyse Environnementale du Québec, Ministère de l’Environnement du Québec.

    Google Scholar 

  • CEAEQ (2012a) Détermination de la couleur vraie dans l’eau : méthode par spectrophotométrie UV-visible avec le platino-cobalt, MA. 103-Col. 2.0, Rév. 2. Ministère du Développement durable, de l’Environnement, de la Faune et des Parcs du Québec, 2012a, 8 p

  • CEAEQ: 2012b, Détermination des solides en suspension totaux et volatils : méthode gravimétrique, MA. 115 -S.S. 1.2, Rév. 1. Ministère du Développement durable, de l’Environnement, de la Faune et des Parcs du Québec, Qc, 2012b, Canada, p. 13.

  • Chen, G. (2004). Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 38, 11–41.

    Article  Google Scholar 

  • Daghrir, R., Drogui, P., François Blais, J., & Mercier, G. (2012). Hybrid process combining electrocoagulation and electro-oxidation processes for the treatment of restaurant wastewaters. Journal of Environmental Engineering, 138, 1146–1156.

    Article  CAS  Google Scholar 

  • Daghrir, R., Drogui, P., & El Khakani, M. (2013). Photoelectrocatalytic oxidation of chlortetracycline using Ti/TiO 2 photo-anode with simultaneous H2O2 production. Electrochimica Acta, 87, 18–31.

    Article  CAS  Google Scholar 

  • Drogui, P., Elmaleh, S., Rumeau, M., Bernard, C., & Rambaud, A. (2001). Hydrogen peroxide production by water electrolysis: application to disinfection. Journal of Applied Electrochemistry, 31, 877–882.

    Article  CAS  Google Scholar 

  • Flasche, K (2002) Possible applications and performance of small scale wastewater treatment plants, Dissertation of the Institute for Urban Water Management and Waste Technology, University of Hanover, 2002.

  • Flox, C., Cabot, P.-L., Centellas, F., Garrido, J. A., Rodríguez, R. M., Arias, C., & Brillas, E. (2007). Solar photoelectro-Fenton degradation of cresols using a flow reactor with a boron-doped diamond anode. Applied Catalysis B: Environmental, 75, 17–28.

    Article  CAS  Google Scholar 

  • Garrido, J. A., Brillas, E., Cabot, P. L., Centellas, F., Arias, C., & Rodríguez, R. M. (2007). Mineralization of drugs in aqueous medium by advanced oxidation processes. Portugaliae Electrochimica Acta, 25, 19.

    Article  CAS  Google Scholar 

  • Golder, A., Samanta, A., & Ray, S. (2007). Removal of Cr 3+ by electrocoagulation with multiple electrodes: bipolar and monopolar configurations. Journal of Hazardous Materials, 141, 653–661.

    Article  CAS  Google Scholar 

  • Guinea, E., Garrido, J. A., Rodríguez, R. M., Cabot, P.-L., Arias, C., Centellas, F., & Brillas, E. (2010). Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration. Electrochimica Acta, 55, 2101–2115.

    Article  CAS  Google Scholar 

  • Guivarch, E., Oturan, N., & Oturan, M. A. (2003). Removal of organophosphorus pesticides from water by electrogenerated Fenton’s reagent. Environmental Chemistry Letters, 1, 165–168.

    Article  CAS  Google Scholar 

  • Isarain-Chávez, E., Garrido, J. A., Rodríguez, R. M., Centellas, F., Arias, C., Cabot, P. L., & Brillas, E. (2011). Mineralization of metoprolol by electro-Fenton and photoelectro-Fenton processes. The Journal of Physical Chemistry. A, 115, 1234–1242.

    Article  Google Scholar 

  • Lahkimi, A., Oturan, M. A., Oturan, N., & Chaouch, M. (2007). Removal of textile dyes from water by the electro-Fenton process. Environmental Chemistry Letters, 5, 35–39.

    Article  CAS  Google Scholar 

  • Mameri, N., Yeddou, A., Lounici, H., Belhocine, D., Grib, H., & Bariou, B. (1998). Defluoridation of septentrional Sahara water of North Africa by electrocoagulation process using bipolar aluminium electrodes. Water Research, 32, 1604–1612.

    Article  CAS  Google Scholar 

  • MDDEP. (2008). Guide technique sur le traitement des eaux usées des résidences isolées. Québec: Ministère du Développement Durable, de l’Environnement et des Parcs du Québec, 2008. 23 p.

    Google Scholar 

  • Meuler, S., Paris, S., & Hackner, T. (2008). Membrane bio-reactors for decentralized wastewater treatment and reuse. Water Science and Technology, 58, 285–294.

    Article  CAS  Google Scholar 

  • Meunier, N., Drogui, P., Montané, C., Hausler, R., Blais, J.-F., & Mercier, G. (2006). Heavy metals removal from acidic and saline soil leachate using either electrochemical coagulation or chemical precipitation. Journal of Environmental Engineering, 132, 545–554.

    Article  CAS  Google Scholar 

  • Millet, M. (1992). L’oxygene et les radicaux libres. Bios, 23(3), 45–50.

    CAS  Google Scholar 

  • Özcan, A., Şahin, Y., & Oturan, M. A. (2008). Removal of propham from water by using electro-Fenton technology: kinetics and mechanism. Chemosphere, 73, 737–744.

    Article  Google Scholar 

  • Panizza, M., & Cerisola, G. (2009). Electro-Fenton degradation of synthetic dyes. Water Research, 43, 339–344.

    Article  CAS  Google Scholar 

  • Sigler, P. B., & Masters, B. (1957). The hydrogen peroxide-induced Ce*(III)-Ce (IV) exchange System1. Journal of the American Chemical Society, 79, 6353–6357.

    Article  CAS  Google Scholar 

  • Wang, C.-T., Hu, J.-L., Chou, W.-L., & Kuo, Y.-M. (2008). Removal of color from real dyeing wastewater by electro-Fenton technology using a three-dimensional graphite cathode. Journal of Hazardous Materials, 152, 601–606.

    Article  CAS  Google Scholar 

  • Wang, C.-T., Chou, W.-L., Chen, L.-S., & Chang, S.-Y. (2009). Silica particles settling characteristics and removal performances of oxide chemical mechanical polishing wastewater treated by electrocoagulation technology. Journal of Hazardous Materials, 161, 344–350.

    Article  CAS  Google Scholar 

  • WERF (2007) Influent constituent characteristics of the modern waste stream from single sources: literature review. Water Environment Research Foundation, ISBN 1-84339-773-0. Report 04-Dec-1a., 2007.

  • Zarei, M., Niaei, A., Salari, D., & Khataee, A. (2010). Application of response surface methodology for optimization of peroxi-coagulation of textile dye solution using carbon nanotube–PTFE cathode. Journal of Hazardous Materials, 173, 544–551.

    Article  CAS  Google Scholar 

  • Zhou, M., Yu, Q., & Lei, L. (2008). The preparation and characterization of a graphite–PTFE cathode system for the decolorization of CI acid Red 2. Dyes and Pigments, 77, 129–136.

    Article  CAS  Google Scholar 

  • Zhu, B., Clifford, D. A., & Chellam, S. (2005). Comparison of electrocoagulation and chemical coagulation pretreatment for enhanced virus removal using microfiltration membranes. Water Research, 39, 3098–3108.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Sincere thanks are extended to the National Sciences and Engineering Research Council of Canada and Premier Tech for their financial contributions to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Drogui.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

SM 1

The evolution of H2O2 concentrations within the electrolytic cell when using an Fe, Al, or Ti/IrO2 electrode at the anode and a current density of 4 mA cm-2. (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senghor, F., Drogui, P. & Seyhi, B. A Combined Electrocoagulation-Electroperoxidation Process for the Tertiary Treatment of Domestic Wastewaters. Water Air Soil Pollut 226, 373 (2015). https://doi.org/10.1007/s11270-015-2637-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2637-6

Keywords

Navigation