Skip to main content
Log in

Intermediate-Scale Investigation of Enhanced-Solubilization Agents on the Dissolution and Removal of a Multicomponent Dense Nonaqueous Phase Liquid (DNAPL) Source

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The presence of multicomponent nonaqueous phase liquid (NAPL) source zones in the subsurface can significantly complicate remediation efforts, transport predictions, and the development of accurate risk assessments. A series of flow-cell experiments was conducted to investigate the effectiveness of two different enhanced-solubilization agents for the removal of a multicomponent dense nonaqueous phase liquid (DNAPL) source zone from homogeneous porous media. The source zone consisted of an equal 1:1:1 mole mixture of cis-1,2-dichloroethene (DCE), trichloroethene (TCE), and tetrachloroethene (PCE) with NAPL saturation (Sn) targeted between 8 and 14 %. Solutions (5 wt%) of hydroxypropyl-β-cyclodextrin (HPCD) and sodium dodecyl sulfate (SDS) were flushed through the flow-cell system until nearly complete contaminant removal was achieved. Analysis of elution curves indicate that SDS was approximately 10 times more efficient at removing all three components from the system compared to HPCD. Although enhancement factor magnitudes vary for each specific contaminant component and enhanced-solubilization agent, the lowest-solubility contaminant component (i.e., PCE) consistently experienced the greatest relative solubility enhancement during flushing. SDS was generally superior when evaluated on a recovery basis; however, HPCD outperformed SDS for all contaminant components when compared based on moles-contaminant to moles-reagent removal efficiency analysis. Contaminant mass flux reduction analysis showed that enhanced-solubilization flushing (HPCD and SDS) resulted in general inefficient contaminant removal behavior. Raoult’s Law could be used to successfully predict aqueous contaminant concentrations from the multicomponent DNAPL source zone, indicating that dissolution processes were relatively ideal during both HPCD and SDS enhanced-solubilization flushing. These findings suggest that multicomponent NAPL source dissolution and removal depend upon the flushing agent itself and of the solubility and properties of the individual components of the NAPL mixture. The selection of a particular enhanced-flushing agent should be evaluated carefully prior to remediation as the dissolution, removal, and mass flux behavior of each component can vary significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdul, A. S., & Gibson, T. L. (1991). Laboratory study of surfactant-enhanced washing of polychlorinated biphenyl from sandy material. Environmental Science and Technology, 25(4), 665–671.

    Article  CAS  Google Scholar 

  • Adeel, Z., Luthy, R. G., & Dzombak, D. A. (1996). Leaching of PCBs from a NAPL entrapped in porous media. In L. N. Reddi (Ed.), Non-Aqueous Phase Liquids (NAPLs) in Subsurface Environment: Assessment and Remediation (pp. 649–660). Washington: ASCE.

    Google Scholar 

  • Akyol, N. H., Lee, A. R., & Brusseau, M. L. (2013). Impact of enhanced-flushing reagents and organic liquid distribution on mass removal and mass discharge. Water Air and Soil Pollution, 224(10), 1731. doi:10.1007/s11270-013-1731-x.

    Article  Google Scholar 

  • Baehr, A. L. (1987). Selective transport of hydrocarbons in the unsaturated zone due to aqueous and vapor phase partitioning. Water Resources Research, 23(10), 1926–1938.

    Article  CAS  Google Scholar 

  • Banerjee, S. (1984). Solubility of Organic Mixtures in Water. Environmental Science and Technology, 18(8), 587–591.

    Article  CAS  Google Scholar 

  • Basu, N. B., Rao, P. S. C., Falta, R. W., Annable, M. D., Jawitz, J. W., & Hatfield, K. (2008). Temporal evolution of DNAPL source and contaminant flux distribution: Impacts of source mass depletion. Journal of Contaminant Hydrology, 95, 93–109.

    Article  CAS  Google Scholar 

  • Bizzigotti, G. O., Reynolds, D. A., & Kueper, B. H. (1997). Enhanced solubilization and destruction of tetrachloroethylene by hydroxypropyl-beta-cyclodextrin and iron. Environmental Science and Technology, 31, 472–478.

    Article  CAS  Google Scholar 

  • Borden, R. C., & Kao, C. M. (1992). Evaluation of groundwater extraction for remediation of petroleum-contaminated aquifers. Water Environment Research, 64(1), 28–36.

    Article  CAS  Google Scholar 

  • Boving, T. B., & Brusseau, M. L. (2000). Solubilization and removal of residual trichloroethene from porous media: Comparison of several solubilization agents. Journal of Contaminant Hydrology, 42(1), 51–67.

    Article  CAS  Google Scholar 

  • Boving, T.B., & McCray, J.E. (2000). Cyclodextrin-enhanced remediation of organic and metal contaminants in porous media and groundwater. Remediation, Spring, 59–83.

  • Brooks, M. C., Annable, M. D., Rao, P. S. C., Hatfield, K., Jawitz, J. W., Wise, W. R., et al. (2004). Controlled release, blind test of DNAPL remediation by ethanol flushing. Journal of Contaminant Hydrology, 69, 281.

    Article  CAS  Google Scholar 

  • Brusseau, M.L. (1993). Complex mixtures and ground water quality, EPA, Environmental Research brief, R.S. Kerr Environmental Research Laboratory.

  • Brusseau, M. L., Wang, X., & Hu, Q. (1994). Enhanced transport of low-polarity organic compounds through soil by cyclodextrin. Environmental Science and Technology, 28(5), 952–956. doi:10.1021/es00054a030.

    Article  CAS  Google Scholar 

  • Brusseau, M. L., Nelson, N. T., Oostrom, M., Zhang, Z. H., Johnson, G. R., & Wietsma, T. W. (2000). Influence of heterogeneity and sampling method on aqueous concentrations associated with NAPL dissolution. Environmental Science and Technology, 34, 3657–3664.

    Article  CAS  Google Scholar 

  • Brusseau, M. L., Zhang, Z., Nelson, N. T., Cain, R. B., Tick, G. R., Johnson, G. R., & Oostrom, M. (2002). Dissolution of nonuniformly distributed immiscible liquid: intermediate-scale experiments and mathematical modeling. Environmental Science and Technology, 36(5), 1033–1041.

    Article  CAS  Google Scholar 

  • Brusseau, M. L., Nelson, N. T., Zhang, Z., Blue, J. E., Rohrer, J., & Allen, T. (2007). Source-zone characterization of a chlorinated-solvent contaminated Superfund site in Tucson, AZ. Journal of Contaminant Hydrology, 90, 21–40.

    Article  CAS  Google Scholar 

  • Brusseau, M. L., Difilippo, E. L., Marble, J. C., & Oostrom, M. (2008). Mass-removal and mass-flux-reduction behavior for idealized source zones with hydraulically poorly-accessible immiscible liquid. Chemosphere, 71(8), 1511–1521.

    Article  CAS  Google Scholar 

  • Brusseau, M. L., Hatton, J., & DiGuiseppi, W. (2011). Assessing the impact of source-zone remediation efforts at the contaminant-plume scale through analysis of contaminant mass discharge. Journal of Contaminant Hydrology, 126, 130–139.

    Article  CAS  Google Scholar 

  • Burke, W.R. (2012). Rate limited diffusion and dissolution of multi-component non-aqueous phase liquids (NAPLs) in groundwater. M.S. Thesis, University of Alabama.

  • Burris, D. R., & MacIntyre, W. G. (1985). Water Solubility Behavior of Binary Hydrocarbon Mixtures. Environmental Toxicology and Chemistry, 4, 371–377.

    Article  CAS  Google Scholar 

  • Burris, D. R., Reisinger, H. J., & Lundegard, P. D. (2006). Fingerprinting approach for relating nonaqueous phase liquid, soil, and groundwater data. Environmental Forensics, 7(3), 247–257.

    Article  CAS  Google Scholar 

  • Carroll, K. C., & Brusseau, M. L. (2009). Dissolution, cyclodextrin-enhanced solubilization, and mass removal of an ideal multicomponent organic liquid. Journal of Contaminant Hydrology, 106, 62–72. doi:10.1016/j.jconhyd.2009.01002.

    Article  CAS  Google Scholar 

  • Carroll, K. C., Taylor, R., Gray, E., & Brusseau, M. L. (2009). The impact of composition on the physical properties and evaporative mass transfer of a PCE-diesel immiscible liquid. Journal of Hazardous Materials, 164, 1074–1081.

    Article  CAS  Google Scholar 

  • Chen, C. S. H., Delfino, J. J., & Rao, P. S. C. (1994). Partitioning of organic and inorganic components from motor oil into water. Chemosphere, 28(7), 1385–1400.

    Article  CAS  Google Scholar 

  • Childs, J. D., Acosta, E., Knox, R. C., Harwell, J. H., & Sabatini, D. A. (2004). Improving the extraction of tetrachloroethylene from soil columns using surfactant gradient systems. Journal of Contaminant Hydrology, 71(1–2), 27–45.

    Article  CAS  Google Scholar 

  • Childs, J., Acosta, E., Annable, M. D., Brooks, M. C., Enfield, C. G., Harwell, J. H., et al. (2006). Field demonstration of surfactant-enhanced solubilization of DNAPL at Dover Air Force Base, Delaware. Journal of Contaminant Hydrology, 82, 1–22. doi:10.1016/j.jconhyd.2005.08.008.

    Article  CAS  Google Scholar 

  • D’Affonseca, F. M., Blum, P., Finkel, M., Melzer, R., & Grathwohl, P. (2008). Field scale characterization and modeling of contaminant release from a coal tar source zone. Journal of Contaminant Hydrology, 102(1–2), 120–139.

    Article  Google Scholar 

  • DiFilippo, E. L., & Brusseau, M. L. (2008). Mass flux reduction as a function of source zone mass removal: Evaluation of field data. Journal of Contaminant Hydrology, 98(1–2), 22–35.

    Article  CAS  Google Scholar 

  • Edwards, D. A., Luthy, R. G., & Liu, Z. (1991). Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environmental Science and Technology, 25(1), 127–133. doi:10.1021/es00013a014.

    Article  CAS  Google Scholar 

  • Falta, R. W., Lee, C. M., Brame, S. E., Roeder, E., Coates, J. T., Wright, C., Wood, A. L., & Enfield, C. G. (1999). Field test of high molecular weight alcohol flushing for subsurface nonaqueous phase liquid remediation. Water Resources Research, 35(7), 2095–2108.

    Article  CAS  Google Scholar 

  • Falta, R. W., Rao, P. S. C., & Basu, N. (2005). Assessing the impacts of partial mass depletion on DNAPL source-zones: I. Analytical modeling of source strength functions and plume response. Journal of Contaminant Hydrology, 78, 259–280.

    Article  CAS  Google Scholar 

  • Fure, A. D., Jawitz, J. W., & Annable, M. D. (2006). DNAPL source-zone depletion: linking architecture and response. Journal of Contaminant Hydrology, 85, 118–140.

    Article  CAS  Google Scholar 

  • Gao, H., Blanford, W. J., & Gao, A. (2013). Solubility enhancement effect of cyclodextrin on groundwater pollutants. Ground Water, 51(2), 268–275.

    CAS  Google Scholar 

  • Jafvert, C. T., & Heath, J. K. (1991). Sediment and saturated-soil associated reactions involving an anionic surfactant (dodecylsulfate): I. Precipitation and micelle formation. Environmental Science and Technology, 25, 1031–1038.

    Article  CAS  Google Scholar 

  • Jawitz, J. W., Fure, A. D., Demmy, G. G., Berglund, S., & Rao, P. S. C. (2005). Groundwater contaminant flux reduction resulting from nonaqueous phase liquid mass reduction. Water Resources Research, 41(10), 10408–10423.

    Article  Google Scholar 

  • Ji, W., & Brusseau, M. L. (1998). A general mathematical model for chemical enhanced flushing of soil contaminated by organic compounds. Water Resources Research, 34(7), 1635–1648.

    Article  CAS  Google Scholar 

  • Kennedy, C. A., & Lennox, W. C. (1997). A pore-scale investigation of mass transport from dissolving DNAPL droplets. Journal of Contaminant Hydrology, 24, 221–246.

    Article  CAS  Google Scholar 

  • Khachikian, C., & Harmon, T. C. (2000). Nonaqueous phase liquid dissolution in porous media: current state knowledge and research needs. Transport in Porous Media, 38(1–2), 3–28.

    Article  CAS  Google Scholar 

  • Knox, R. C., Shau, B. J., Sabatini, D. A., & Harwell, J. H. (1999). In field demonstration studies of surfactant-enhanced solubilization and mobilization at Hill Air Force Base, Utah. In M. L. Brusseau, D. A. Sabatini, J. S. Gierke, M. D. Annable, & A.C.S. Symposium Series (Eds.), Innovative subsurface remediation: Field testing of physical, chemical, and characterization technologies (pp. 49–63). Washington: American Chemical Society.

    Chapter  Google Scholar 

  • Lemke, L. D., & Abriola, L. M. (2006). Modeling dense nonaqueous phase liquid mass removal in nonuniform formations: Linking source-zone architecture and system response. Geosphere, 2, 74–82.

    Article  Google Scholar 

  • Lemke, L. D., Abriola, L. M., & Lang, J. R. (2004). Influence of hydraulic property correlation on predicted dense nonaqueous phase liquid source-zone architecture, mass recovery and contaminant flux. Water Resources Research, 40(12), W12417.

    Article  Google Scholar 

  • Lesage, S., & Brown, S. (1994). Observation of the dissolution of NAPL mixtures. Journal of Contaminant Hydrology, 15(1–2), 57–71.

    Article  CAS  Google Scholar 

  • Marble, J. C., DiFilippo, E. L., Zhang, Z., Tick, G. R., & Brusseau, M. L. (2008). Application of a lumped-process mathematical model to dissolution of non-uniformly distributed immiscible liquid in heterogeneous porous media. Journal of Contaminant Hydrology, 100, 1–10.

    Article  CAS  Google Scholar 

  • McColl, C. M., Johnson, G. R., & Brusseau, M. L. (2008). Evaporative mass transfer behavior of a complex immiscible liquid. Chemosphere, 73(4), 607–613.

  • McCray, J. E., & Brusseau, M. L. (1998). Cyclodextrin-enhanced in situ flushing of multiple-component immiscible organic liquid contamination at the field scale: mass removal effectiveness. Environmental Science and Technology, 32(9), 1285–1293.

    Article  CAS  Google Scholar 

  • McCray, J. E., & Brusseau, M. L. (1999). Cyclodextrin-enhanced in situ flushing of multiple-component immiscible organic liquid contamination at the field scale: analysis of dissolution behavior. Environmental Science and Technology, 33(1), 89–95.

    Article  CAS  Google Scholar 

  • McCray, J.E., & Dugan, P.J. (2002). Nonideal equilibrium dissolution of trichloroethene from a decane-based nonaqueous phase liquid mixture:experimental and modeling investigation. Water Resources Research, 38(7). doi:10.1029/2001WR000883.

  • McCray, J. E., Boving, T. B., & Brusseau, M. L. (2000). Cyclodextrin-enhanced solubilization of organic contaminants with implications for aquifer remediation. Ground Water Monitoring and Remediation, 20(1), 94–103.

    Article  CAS  Google Scholar 

  • McCray, J. E., Tick, G. R., Jawitz, J. W., Brusseau, M. L., Gierke, J. S., Falta, R. W., Knox, R. C., Sabatini, D. A., Harwell, J. H., & Annable, M. D. (2011). Remediation of NAPL source-zones: Lesson learned from field studies at Hill and Dover AFB. Ground Water, 49(5), 727–744. doi:10.1111/j.1745-6584.2010.00783.x.

    Article  CAS  Google Scholar 

  • Mukherji, S., Peters, C. A., & Weber, W. J. (1997). Mass transfer of poly nuclear aromatic hydrocarbons from complex DNAPL mixtures. Environmental Science and Technology, 31(2), 416–423.

    Article  CAS  Google Scholar 

  • National Research Council (NRC) (U.S.). (1994). Alternatives for ground water cleanup. Washington: National Research Council (NRC).

    Google Scholar 

  • National Research Council (NRC) (U.S.). (1997). Innovation in groundwater and soil cleanup. Washington: National Academy Press.

    Google Scholar 

  • National Research Council (NRC) (U.S.). (1999). Groundwater and soil cleanup: Improving management of persistent contaminants. Washington: National Academy of Sciences.

    Google Scholar 

  • National Research Council (NRC) (U.S.). (2000). Research needs in subsurface science. Washington: National Academy of Sciences.

    Google Scholar 

  • National Research Council (NRC) (U.S.). (2004). Contaminants in the subsurface: Source-zone assessment and remediation. Washington: National Research Council (NRC).

    Google Scholar 

  • National Research Council (NRC) (U.S.). (2005). Contaminants in the subsurface: Source Zone assessment and remediation. Washington: National Academy Press.

    Google Scholar 

  • Ooostrom, M., Dane, J. H., & Wietsma, T. W. (2006). A review of multidimensional, multifluid intermediate-scale experiments: nonaqueous phase liquid dissolution and enhanced remediation. Vadose Zone Journal, 5(2), 570–598.

    Article  Google Scholar 

  • Palmer, C.D., & Fish, W. (1992). Chemical enhancements to pump and treat remediation. Ground Water Issue, EPA/540/S-92/OOl.

  • Parker, J. C., & Park, E. (2004). Modeling field-scale dense nonaqueous phase liquid dissolution kinetics in heterogeneous aquifers. Water Resources Research, 40(5), 1–12. doi:10.1029/2003wr002807.

    Article  Google Scholar 

  • Pfannkuch, H.O. (1984). Determination of the contaminant source strength from mass exchange processes at the petroleum–ground-water interface in shallow aquifer systems. Proceedings of the NWWA/API Conference on Petroleum Hydrocarbons and Organic Chemicals in Groundwater Prevention, Detection and Restoration. National Water Well Association,Worthington, Ohio, pp. 111–129.

  • Phelan, T. J., Lemke, L. D., Bradford, S. A., O’Carroll, D. M., & Abriola, L. M. (2004). Influence of textural and wettability variations on predictions of DNAPL persistence and plume development in saturated porous media. Advances in Water Resources, 27(4), 411–427.

    Article  CAS  Google Scholar 

  • Pinder, G.F. (1982). Groundwater hydrology-research needs for the next decade, in Fundamental Research Needs for Water and Waste Systems, edited by M.S. Switzenbaum, AEEP/NSF Conference, Arlington, Va.

  • Powers, S. C., Loureiro, C. O., Abriola, L. M., & Weber, W. J. (1991). Theoretical study of the significance of nonequilibrium dissolution of nonaqueous phase liquids in subsurface systems. Water Resources Research, 27(4), 463–477.

    Article  CAS  Google Scholar 

  • Rostad, C. E., Pereira, W. E., & Hult, M. F. (1985). Partitioning studies of coal-tar constituents in a 2-phase contaminated groundwater system. Chemosphere, 14(8), 1023–1036.

    Article  CAS  Google Scholar 

  • Sabatini, D.A., Knox, R.C., & Harwell, J.H. (1996). Surfactant-enhanced DNAPL remediation: Surfactant selection, hydraulic efficiency, and economic factors, U.S. EPA Environmental Research Brief number EPA/600/S-96/002.

  • Sabatini, D. A., Knox, R. C., Harwell, J. H., Soerens, T. S., Chen, L., Brown, R. E., & West, C. C. (1997). Design of a surfactant remediation field demonstration based on laboratory and modeling studies. Ground Water, 35(6), 954–963.

    Article  CAS  Google Scholar 

  • Schwarzenbach, R. P., Gschwend, P. M., & Imboden, D. M. (1993). Environmental organic chemistry (2nd ed.). Hoboken: Wiley-Interscience.

    Google Scholar 

  • Schwille, F. (1988). Dense chlorinated solvents in porous and fractured media, translated by J.F. Pankow, Lewis, Chelsea, Mich.

  • Slavic, D.R. (2014). M.S. Thesis, The University of Alabama, Tuscaloosa.

  • Soga, K., Page, J. W. E., & Illangasekare, T. H. (2004). A review of NAPL source zone remediation efficiency and the mass flux approach. Journal of Hazardous Materials, 110, 13–27.

    Article  CAS  Google Scholar 

  • Stroo, H. F., Unger, M., Ward, C. H., Kavanaugh, M. C., Vogel, C., Leeson, A., Marqusee, J. A., & Smith, B. P. (2003). Remediating chlorinated solvent source zones. Environmental Science and Technology, 37(11), 224a–230a.

    Article  CAS  Google Scholar 

  • Tick, G. R., & Rincon, E. A. (2009). Effect of enhanced-solubilization agents on dissolution and mass flux from uniformly distributed immiscible-liquid trichloroethene (TCE) in homogeneous porous media. Water Air and Soil Pollution, 204, 315–332. doi:10.1007/s11270-009-0047-3.

    Article  CAS  Google Scholar 

  • Tick, G. R., Lourenso, F., Wood, A. L., & Brusseau, M. L. (2003). Pilot-scale demonstration of cyclodextrin as a solubility-enhancement agent for the remediation of a tetrachloroethene contaminated aquifer. Environmental Science and Technology, 37(24), 5829–5834. doi:10.1021/es030417f.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (U.S. EPA). (1985). Treatment of contaminated soils with aqueous surfactants. Report EPA/600/2-285/129.

  • U.S. Environmental Protection Agency (U.S. EPA). (2003). The DNAPL remediation challenge: Is there a case for source depletion? Expert panel on DNAPL remediation, Kavanaugh, MC. And PSC Rao, Co-chairs, EPA/600/R- 03/143. Office of Research and Development, Washington, DC.

  • U.S. Environmental Protection Agency (U.S. EPA). (2007). Research provides remediation tools to manage dense non-aqueous phase liquids (DNAPLs). Science in Action. Washington: Office of Research and Development.

    Google Scholar 

  • Wang, X., & Brusseau, M. L. (1993). Solubilization of low-polarity organic compounds by hydroxypropyl-β-cyclodextrin. Environmental Science and Technology, 27(12), 2821–2825. doi:10.1021/es00049a023.

    Article  CAS  Google Scholar 

  • Wang, X., & Brusseau, M. L. (1995). Simultaneous complexation of organic compounds and heavy metals by a modified cyclodextrin. Environmental Science and Technology, 29(10), 2632–2635. doi:10.1021/es00010a026.

    Article  CAS  Google Scholar 

  • Whelan, M. P., Voudrias, E. A., & Pearce, A. (1994). DNAPL pool dissolution in saturated porous media; procedure development and preliminary results. Journal of Contaminant Hydrology, 15(3), 223–237.

    Article  CAS  Google Scholar 

  • Wood, A.L., & Enfield, C.G. (1999). In situ enhanced source removal. EPA/600/C-99/002.

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their constructive comments and suggestions. This research was supported in part from startup funds used to purchase analytical equipment, instruments, supplies, and chemicals by the College of Arts and Sciences, The University of Alabama.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey R. Tick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tick, G.R., Harvell, J.R. & Murgulet, D. Intermediate-Scale Investigation of Enhanced-Solubilization Agents on the Dissolution and Removal of a Multicomponent Dense Nonaqueous Phase Liquid (DNAPL) Source. Water Air Soil Pollut 226, 371 (2015). https://doi.org/10.1007/s11270-015-2636-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2636-7

Keywords

Navigation