Skip to main content

Advertisement

Log in

Effects of pH and Anions on the Generation of Reactive Oxygen Species (ROS) in nZVI-rGo-Activated Persulfate System

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, nanosized zero-valent iron-reduced graphene oxide (nZVI-rGO)-activated persulfate (PS) was used to investigate the generation of reactive oxygen species (ROS) for the degradation of trichloroethylene (TCE) in the aqueous solution. More than 98 % of TCE was degraded within 2 min under experimental conditions. The generation of ·OH increased when the pH was shifted toward the basic region while ·SO4 radicals’ intensity increased in the acidic pH. Different scenarios have been observed in ·O2 generation in the neutral and strong basic pH and decreased in acidic or slightly basic pH. In addition, the intensity of ·OH was increased with the addition of HCO3 (10 mM) and NO3 (100 mM) but decreased in the presence of Cl (10 and 100 mM), HCO3 (100 mM), and NO3 (10 mM). The degradation of anisole, probe for both ·OH and ·SO4 , was slightly enhanced by 10 mM NO3 anions but decreased in 100 mM salt solution. ·O2 intensity was increased while HCO3 (10 and 100 mM) and NO3 (100 mM) anions were used. nZVI-rGO-activated PS process could remove TCE in aqueous effectively, and the ROS generation and intensity were influenced by solution pH values and anions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Shamsi, M. A., & Thomson, N. R. (2013). Treatment of organic compounds by activated persulfate using nanoscale zerovalent iron. Industrial & Engineering Chemistry Research, 52(38), 13564–13571.

    Article  CAS  Google Scholar 

  • Bremner, D. H., Burgess, A. E., Houllemare, D., & Namkung, K. C. (2006). Phenol degradation using hydroxyl radicals generated from zero-valent iron and hydrogen peroxide. Applied Catalysis B: Environmental, 63(1–2), 15–19.

    Article  CAS  Google Scholar 

  • Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O) in aqueous solution. Journal of Physical and Chemical Reference Data, 17(2), 513–886.

    Article  CAS  Google Scholar 

  • Cheng, P., Yang, Z., Wang, H., Cheng, W., Chen, M., & Shangguan, W. (2012). TiO2–graphene nanocomposites for photocatalytic hydrogen production from splitting water. International Journal of Hydrogen Energy, 37(3), 2224–2230.

    Article  CAS  Google Scholar 

  • Crane, R. A., & Scott, T. B. (2012). Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. Journal of Hazardous Materials, 211–212, 112–125.

    Article  Google Scholar 

  • Duan, X., Sun, H., Kang, J., Wang, Y., Indrawirawan, S., & Wang, S. (2015). Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons. ACS Catalysis, 5(8), 4629–4636.

    Article  CAS  Google Scholar 

  • Fang, G. D., Dionysiou, D. D., Wang, Y., Al-Abed, S. R., & Zhou, D. M. (2012). Sulfate radical-based degradation of polychlorinated biphenyls: effects of chloride ion and reaction kinetics. Journal of Hazardous Materials, 227–228, 394–401.

    Article  Google Scholar 

  • Gomathi Devi, L., Girish Kumar, S., Mohan Reddy, K., & Munikrishnappa, C. (2009). Photo degradation of methyl orange an azo dye by advanced Fenton process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism. Journal of Hazardous Materials, 164(2–3), 459–467.

    Article  CAS  Google Scholar 

  • He, D., Cheng, K., Peng, T., Sun, X., Pan, M., & Mu, S. (2012). Bifunctional effect of reduced graphene oxides to support active metal nanoparticles for oxygen reduction reaction and stability. Journal of Materials Chemistry, 22(39), 21298–21304.

    Article  CAS  Google Scholar 

  • Hummers, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), 1339–1339.

    Article  CAS  Google Scholar 

  • Hussain, I., Zhang, Y., & Huang, S. (2014). Degradation of aniline with zero-valent iron as an activator of persulfate in aqueous solution. RSC Advances, 4(7), 3502–3511.

    Article  CAS  Google Scholar 

  • Hussain, I., Zhang, Y., Huang, S., & Du, X. (2012). Degradation of p-chloroaniline by persulfate activated with zero-valent iron. Chemical Engineering Journal, 203, 269–276.

    Article  CAS  Google Scholar 

  • Ikhlaq, A., Brown, D. R., & Kasprzyk-Hordern, B. (2013). Mechanisms of catalytic ozonation: an investigation into superoxide ion radical and hydrogen peroxide formation during catalytic ozonation on alumina and zeolites in water. Applied Catalysis B: Environmental, 129, 437–449.

    Article  CAS  Google Scholar 

  • Jiang, B., Yang, K., Zhao, Q., Wu, Q., Liang, Z., Zhang, L., et al. (2012). Hydrophilic immobilized trypsin reactor with magnetic graphene oxide as support for high efficient proteome digestion. Journal of Chromatography A, 1254, 8–13.

    Article  CAS  Google Scholar 

  • Koppenol, W. H. (1994). Thermodynamic considerations on the formation of reactive species from hypochlorite, superoxide and nitrogen monoxide. Could nitrosyl chloride be produced by neutrophils and macrophages? FEBS Letters, 347(1), 5–8.

    Article  CAS  Google Scholar 

  • Kwon, M., Kim, S., Yoon, Y., Jung, Y., Hwang, T. M., Lee, J., et al. (2015). Comparative evaluation of ibuprofen removal by UV/H2O2 and UV/S2O8 2− processes for wastewater treatment. Chemical Engineering Journal, 269, 379–390.

    Article  CAS  Google Scholar 

  • Lai, B., Chen, Z., Zhou, Y., Yang, P., Wang, J., & Chen, Z. (2013). Removal of high concentration p-nitrophenol in aqueous solution by zero valent iron with ultrasonic irradiation (US–ZVI). Journal of Hazardous Materials, 250–251, 220–228.

    Article  Google Scholar 

  • Le, C., Wu, J. H., Li, P., Wang, X., Zhu, N. W., Wu, P. X., et al. (2011). Decolorization of anthraquinone dye Reactive Blue 19 by the combination of persulfate and zero-valent iron. Water Science and Technology, 64(3), 754–759.

    Article  CAS  Google Scholar 

  • Liang, C., Guo, Y. Y., Chien, Y. C., & Wu, Y. J. (2010). Oxidative degradation of MTBE by pyrite-activated persulfate: proposed reaction pathways. Industrial & Engineering Chemistry Research, 49(18), 8858–8864.

    Article  CAS  Google Scholar 

  • Liang, C., & Lai, M. C. (2008). Trichloroethylene degradation by zero valent iron activated persulfate oxidation. Environmental Engineering Science, 25(7), 1071–1078.

    Article  CAS  Google Scholar 

  • Liang, C., Wang, Z. S., & Mohanty, N. (2006). Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 °C. Science of the Total Environment, 370(2–3), 271–277.

    Article  CAS  Google Scholar 

  • Liu, C. S., Shih, K., Sun, C. X., & Wang, F. (2012). Oxidative degradation of propachlor by ferrous and copper ion activated persulfate. Science of the Total Environment, 416, 507–512.

    Article  CAS  Google Scholar 

  • Liu, Y., Wu, H., Li, M., Yin, J. J., & Nie, Z. (2014). pH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen. Nanoscale, 6(20), 11904–11910.

    Article  CAS  Google Scholar 

  • Lutze, H. V., Kerlin, N., & Schmidt, T. C. (2014). Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate. Water Research, 72, 349–360.

    Article  Google Scholar 

  • Peyton, G. R. (1993). The free-radical chemistry of persulfate-based total organic carbon analyzers. Marine Chemistry, 41(1–3), 91–103.

    Article  CAS  Google Scholar 

  • Phenrat, T., Saleh, N., Sirk, K., Tilton, R. D., & Lowry, G. V. (2006). Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science & Technology, 41(1), 284–290.

    Article  Google Scholar 

  • Roshani, B., & Karpel vel Leitner, N. (2011). The influence of persulfate addition for the degradation of micropollutants by ionizing radiation. Chemical Engineering Journal, 168(2), 784–789.

    Article  CAS  Google Scholar 

  • Sahoo, M. K., Sinha, B., Marbaniang, M., Naik, D. B., & Sharan, R. N. (2012). Mineralization of Calcon by UV/oxidant systems and assessment of biotoxicity of the treated solutions by E. coli colony forming unit assay. Chemical Engineering Journal, 181–182, 206–214.

    Article  Google Scholar 

  • Shih, Y. H., & Tai, Y. T. (2010). Reaction of decabrominated diphenyl ether by zerovalent iron nanoparticles. Chemosphere, 78(10), 1200–1206.

    Article  CAS  Google Scholar 

  • Smith, B. A., Teel, A. L., & Watts, R. J. (2004). Identification of the reactive oxygen species responsible for carbon tetrachloride degradation in modified Fenton’s systems. Environmental Science & Technology, 38(20), 5465–5469.

    Article  CAS  Google Scholar 

  • Staehelin, J., & Hoigne, J. (1982). Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide. Environmental Science & Technology, 16(10), 676–681.

    Article  CAS  Google Scholar 

  • Sun, H., Zhou, G., Liu, S., Ang, H. M., Tadé, M. O., & Wang, S. (2012). Nano-Fe0 encapsulated in microcarbon spheres: synthesis, characterization, and environmental applications. ACS Applied Materials & Interfaces, 4(11), 6235–6241.

    Article  CAS  Google Scholar 

  • Tan, C., Gao, N., Deng, Y., An, N., & Deng, J. (2012). Heat-activated persulfate oxidation of diuron in water. Chemical Engineering Journal, 203, 294–300.

    Article  CAS  Google Scholar 

  • Teel, A. L., Ahmad, M., & Watts, R. J. (2011). Persulfate activation by naturally occurring trace minerals. Journal of Hazardous Materials, 196, 153–159.

    Article  CAS  Google Scholar 

  • Vicente, F., Santos, A., Romero, A., & Rodriguez, S. (2011). Kinetic study of diuron oxidation and mineralization by persulphate: effects of temperature, oxidant concentration and iron dosage method. Chemical Engineering Journal, 170(1), 127–135.

    Article  CAS  Google Scholar 

  • Wang, J., Guo, Y., Liu, B., Jin, X., Liu, L., Xu, R., et al. (2011). Detection and analysis of reactive oxygen species (ROS) generated by nano-sized TiO2 powder under ultrasonic irradiation and application in sonocatalytic degradation of organic dyes. Ultrasonics Sonochemistry, 18(1), 177–183.

    Article  CAS  Google Scholar 

  • Wang, X., Wang, L., Li, J., Qiu, J., Cai, C., & Zhang, H. (2014). Degradation of acid orange 7 by persulfate activated with zero valent iron in the presence of ultrasonic irradiation. Separation and Purification Technology, 122, 41–46.

    Article  CAS  Google Scholar 

  • Wang, Y., Sun, H., Duan, X., Ang, H. M., Tadé, M. O., & Wang, S. (2015). A new magnetic nano zero-valent iron encapsulated in carbon spheres for oxidative degradation of phenol. Applied Catalysis B: Environmental, 172–173, 73–81.

    Article  Google Scholar 

  • Xu, H. B., Zhao, D. Y., Li, Y. J., Liu, P. Y., & Dong, C. X. (2014a). Enhanced degradation of ortho-nitrochlorobenzene by the combined system of zero-valent iron reduction and persulfate oxidation in soils. Environmental Science and Pollution Research, 21(7), 5132–5140.

    Article  CAS  Google Scholar 

  • Xu, M., Du, H., Gu, X., Lu, S., Qiu, Z., & Sui, Q. (2014b). Generation and intensity of active oxygen species in thermally activated persulfate systems for the degradation of trichloroethylene. RSC Advances, 4(76), 40511–40517.

    Article  CAS  Google Scholar 

  • Xu, M., Gu, X., Lu, S., Qiu, Z., & Sui, Q. (2014c). Role of reactive oxygen species for 1,1,1-trichloroethane degradation in a thermally activated persulfate system. Industrial & Engineering Chemistry Research, 53(3), 1056–1063.

    Article  CAS  Google Scholar 

  • Yang, X. J., Xu, X. M., Xu, J., & Han, Y. F. (2013). Iron oxychloride (FeOCl): an efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants. Journal of the American Chemical Society, 135(43), 16058–16061.

    Article  CAS  Google Scholar 

  • Yen, C. H., Chen, K. F., Kao, C. M., Liang, S. H., & Chen, T. Y. (2011). Application of persulfate to remediate petroleum hydrocarbon-contaminated soil: feasibility and comparison with common oxidants. Journal of Hazardous Materials, 186(2–3), 2097–2102.

    Article  CAS  Google Scholar 

  • Zhang, J., Zhang, F., Yang, H., Huang, X., Liu, H., Zhang, J., et al. (2010). Graphene oxide as a matrix for enzyme immobilization. Langmuir, 26(9), 6083–6085.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the National Natural Science Foundation of China (Nos. 51273063, 21476143, and 21306049), the Fundamental Research Funds for the Central Universities, the higher school specialized research fund for the doctoral program (222201313005 and 222201314029), China Postdoctoral Science Foundation (2015 M570341), 111 Project Grant (B08021), and the Open Project of State Key Laboratory of Chemical Engineering (SKL-ChE-14C01). Author (Ayyaz Ahmad) thanks the Higher Education Commission (HEC), Pakistan, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaogang Gu or Xuhong Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, A., Gu, X., Li, L. et al. Effects of pH and Anions on the Generation of Reactive Oxygen Species (ROS) in nZVI-rGo-Activated Persulfate System. Water Air Soil Pollut 226, 369 (2015). https://doi.org/10.1007/s11270-015-2635-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2635-8

Keywords

Navigation