Skip to main content
Log in

Nitric Oxide Attenuates Oxidative Stress Induced by Arsenic in Lettuce (Lactuca sativa) Leaves

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Lettuce plants were exposed to different toxic levels of arsenic (As) to induce an oxidative stress response, and the role of nitric oxide (NO) (provided as sodium nitroprusside (SNP)) as an attenuating agent of this stress condition was evaluated. Plants were treated with 50 μM of As with or without 100 μM SNP added to the nutrient solution. The hydrogen peroxide, superoxide anion, and malondialdehyde concentrations and enzymatic activities were measured. The increase in As concentration detected in the leaves was followed by a significant increase in H2O2 and malondialdehyde (MDA) concentrations. However, the presence of SPN promoted a reduction in the concentration of these oxidative agents and also reduced the translocation of As to the shoots. The enzymatic activities in the plants exposed to As were increased, which indicates the active participation of these enzymes in the reduction of oxidative stress induced by the metalloid. In the plants exposed to As and SNP, the enzymatic activities were not so high; this result was possibly related to the direct action of NO in scavenging the generated toxic metabolites and with the reduction in the translocation of the pollutant to the shoots. Lettuce and leaves of other vegetables are usually ingested, and this study shows an alternative to avoid human contamination with As.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson, J. V., & Davis, D. G. (2004). Abiotic stress alters transcript profiles and activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula. Physiologia Plantarum, 120, 421–433.

    Article  CAS  Google Scholar 

  • Anderson, M. D., Prasad, T. K., & Stewart, C. R. (1995). Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotylus of maize seedlings. Plant Physiology, 109, 1247–1257.

    CAS  Google Scholar 

  • Andrade, H. M. A., Silva, C. S., Mattos, G., & Arantes, R. (2013). Oxidative stress and antioxidant responses in four aquatic plants exposed to arsenic. Duc in Altum, 13, 21–26.

    Google Scholar 

  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay aplicable to acrylamide gels. Analytical Biochemistry, 44, 276–287.

    Article  CAS  Google Scholar 

  • Berridge, M. J., Bootman, M. D., & Roderick, H. L. (2003). Calcium signaling: dynamics, homeostasis and remodeling. Nature Reviews Molecular Cell Biology, 4, 517–529.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  • Carlberg, I., & Mannervik, B. (1985). Glutathione reductase. Methods in Enzymology, 113, 484–495.

    Article  CAS  Google Scholar 

  • Chance, B., & Maehley, A. C. (1955). Assay of catalases and peroxidases. Methods in Enzymology, 2, 764–775.

    Article  Google Scholar 

  • Clark, R. B. (1975). Characterization of phosphatase of intact maize roots. Journal of Agricultural and Food Chemistry, 23, 458–460.

    Article  CAS  Google Scholar 

  • Del Longo, O. T., González, A., Pastori, G. M., & Trippi, V. S. (1993). Antioxidant defenses under hyperoxygenic and hyperosmotic conditions in leaves of two lines of maize with differential sensitivity to drought. Plant Cell Physiology, 34, 1023–1028.

    Google Scholar 

  • Farid, A. T. M., Roy, K. C., Hossain, K. M., & Sen, R. (2003). A study of arsenic contaminated irrigation water and its carried over effect on vegetable (pp. 113–121). Dhaka: BUET-UNU, International Symposium of Fate of Arsenic in the Environment.

    Google Scholar 

  • Farnese, F. S., Oliveira, J. A., Gusman, G. S., Leão, G. A., Ribeiro, C., Siman, L. I., & Cambraia, J. (2013). Plant responses to arsenic: the role of nitric oxide. Water, Air, and Soil Pollution, 224, 1660–1667.

    Article  Google Scholar 

  • Farnese, F. S., Oliveira, J. A., Gusman, G. S., Leao, G. A., Silveira, N. M., Silva, P. E. M., Ribeiro, C., & Cambraia, J. (2014a). Effects of adding nitroprusside on arsenic stressed response of Pistia stratiotes L. under hydroponic conditions. International Journal of Phytoremediation, 16, 123–137.

    Article  CAS  Google Scholar 

  • Farnese, F. S., Oliveira, J. A., Lima, F. S., Leão, G. A., Gusman, G. S., & Silva, L. C. (2014b). Evaluation of the potential of Pistia stratiotes L. (water lettuce) for bioindication and phytoremediation of aquatic environments contaminated with arsenic. Brazilian Journal of Biology, 74(4), 25–31.

    Google Scholar 

  • Foyer, C. H., & Halliwell, B. (1976). The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta, 133, 21–25.

    Article  CAS  Google Scholar 

  • Gay, C., & Gebicki, J. M. (2000). A critical evaluation of the effect of sorbitol on the ferric-xylenol orange hydroperoxide assay. Analytical Biochemistry, 284, 217–220.

    Article  CAS  Google Scholar 

  • Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases. Plant Physiology, 59, 309–314.

    Article  CAS  Google Scholar 

  • Gomes, M. P., Carvalho, M., Carvalho, G. S., Marques, T. C., Garcia, Q. S., Guilherme, L. R., & Soares, A. M. (2013). Phosphorus improves arsenic phytoremediation by Anadenanthera peregrina by alleviating induced oxidative stress. International Journal of Phytoremediation, 15, 633–646.

    Article  CAS  Google Scholar 

  • Gusman, G. S., Oliveira, J. A., Farnese, F. S., & Cambraia, J. (2013a). Mineral nutrition and enzymatic adaptation induced by arsenate and arsenite exposure in lettuce plants. Plant Physiology and Biochemistry, 71, 307–314.

    Article  CAS  Google Scholar 

  • Gusman, G. S., Oliveira, J. A., Farnese, F. S., & Cambraia, J. (2013b). Arsenate and arsenite: the toxic effects on photosynthesis and growth of lettuce plants. Acta Physiologiae Plantarum, 35, 1201–1209.

    Article  CAS  Google Scholar 

  • Havir, E. A., & McHale, N. A. (1987). Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiology, 84, 450–455.

    Article  CAS  Google Scholar 

  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplast. I. kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198.

    Article  CAS  Google Scholar 

  • Koshiba, T. (1993). Cytosolic ascorbato peroxidase in seedlings and leaves of maize (Zea mays). Plant Cell Physiology, 34, 713–721.

    CAS  Google Scholar 

  • Kuo, M. C., & Kao, C. H. (2003). Aluminum effects on lipid peroxidation and antioxidative enzyme activities in rice leaves. Biologia Plantarum, 46, 149–152.

    Article  CAS  Google Scholar 

  • Leão, G. A., Oliveira, J. A., Farnese, F. S., Gusman, G. S., & Felipe, R. T. A. (2014a). Sulfur metabolism: different tolerances of two aquatic macrophytes exposed to arsenic. Ecotoxicology and Environmental Safety, 105, 36–42.

    Article  Google Scholar 

  • Leão, G. A., Oliveira, J. A., Felipe, R. T. A., Farnese, F. S., & Gusman, G. S. (2014b). Anthocyanins, thiols, and antioxidant scavenging enzymes are involved in Lemna gibba tolerance to arsenic. Journal of Plant Interactions, 9, 143–151.

    Article  Google Scholar 

  • Liu, S., Yang, R., Pan, Y., Ma, M., Pan, J., Zhao, Y., Cheng, Q., Wu, M., Wang, M., & Zhang, L. (2015). Nitric oxide contributes to minerals absorption, proton pumps and hormone equilibrium under cadmium excess in Trifolium repens L. plants. Ecotoxicology and Environmental Safety, 119, 35–46.

    Article  CAS  Google Scholar 

  • Marin, A. R., Pezeshki, S. R., Masscheleyn, P. H., & Choi, H. S. (1993). Effect of dimethylarsenic acid (DMAA) on growth, tissue arsenic and photosynthesis in rice plants. Journal of Plant Nutrition, 16, 865–880.

    Article  CAS  Google Scholar 

  • Meier, S., Madeo, L., Ederli, L., Donaldson, L., Pasqualini, S., & Gehring, C. (2009). Deciphering cGMP signatures and cGMP-dependent pathways in plant defence. Plant Signaling & Behavior, 4, 307–309.

    Article  CAS  Google Scholar 

  • Mizuno, M., Kamei, M., & Tsuchida, H. (1998). Ascorbate peroxidase and catalase cooperate for protection against hydrogen peroxide generated in potato tubers during low-temperature storage. Biochemistry and Molecular Biology International, 44, 717–725.

    CAS  Google Scholar 

  • Mohammadi, M., & Karr, A. L. (2001). Superoxide anion generation in effective and ineffective soybean root nodules. Journal of Plant Physiology, 158, 1023–1029.

    Article  CAS  Google Scholar 

  • Mulabagal, V., Ngouajio, M., Nair, A., Zhang, Y., Gottumukkala, A. L., & Nair, M. G. (2010). In vitro evaluation of red and green lettuce (Lactuca sativa) for functional food properties. Food Chemistry, 118, 300–306.

    Article  CAS  Google Scholar 

  • Nagalakshmi, N., & Prasad, M. N. V. (2001). Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Science, 160, 291–299.

    Article  CAS  Google Scholar 

  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiology, 22, 867–880.

    CAS  Google Scholar 

  • Päivöke, K. E., & Simola, L. K. (2001). Arsenate toxicity to Pisum sativum: mineral nutrients, chlorophyll content, and phytase activity. Ecotoxicology and Environmental Safety, 49, 111–121.

    Article  Google Scholar 

  • Peixoto, P. H. P., Cambraia, J., Sant’ana, R., Mosquim, P. R., & Moreira, M. A. (1999). Aluminum effects on lipid peroxidation and on activities of enzymes of oxidative metabolism in sorghum. Revista Brasileira de Fisiologia Vegetal, 11, 137–143.

    CAS  Google Scholar 

  • Pető, A., Lehotai, N., Juste, J. L., León, J., Tari, I., & Erdei, L. (2011). Involvement of nitric oxide and auxin in signal transduction of copper-induced morphological responses in Arabidopsis seedlings. Annals of Botany, 108, 449–457.

    Article  Google Scholar 

  • SAS Institute. (1999). SAS/STAT user’s guide 8.0. Cary: SAS Institute Inc.

    Google Scholar 

  • Singh, H. P., Kaur, S., Batish, D. R., Sharma, V. P., Sharma, N., & Kohli, R. K. (2009). Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide, 20, 289–297.

    Article  CAS  Google Scholar 

  • Srivastava, S., Mishra, S., Tripathi, R. D., Dwivedi, S., Trivedi, P. K., & Tandon, P. K. (2007). Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle. Environmental and Science Technology, 41, 2930–2936.

    Article  CAS  Google Scholar 

  • Wang, Y., Loake, G. J., & Chu, C. (2013). Cross-talk of nitric oxide and reactive oxygen species in plant programmed cell death. Frontiers in Plant Science, 4, 1–7.

    Google Scholar 

  • Wang, J., Yu, S. X., Zhang, M., & Cui, X. M. (2015). Exogenous nitric oxide mediated GSH–PC synthesis pathway in tomato under copper stress. Russian Journal of Plant Physiology, 3, 349–359.

    Article  Google Scholar 

  • Xiong, J., An, L., Lu, H., & Zhu, C. (2009). Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta, 230, 755–765.

    Article  CAS  Google Scholar 

  • Zhang, M., Jiang, C., & Cui, X.-M. (2013). Effects of exogenous nitric oxide donor snp on physiological and biochemical indexes in tomato seedlings under copper stress. Plant Physiology Journal, 49, 144–152.

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Fundação de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG), and the Federal University of Viçosa for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juraci A. de Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silveira, N.M., de Oliveira, J.A., Ribeiro, C. et al. Nitric Oxide Attenuates Oxidative Stress Induced by Arsenic in Lettuce (Lactuca sativa) Leaves. Water Air Soil Pollut 226, 379 (2015). https://doi.org/10.1007/s11270-015-2630-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2630-0

Keywords

Navigation