Skip to main content
Log in

Effectiveness and Mode of Action of Calcium Nitrate and Phoslock® in Phosphorus Control in Contaminated Sediment, a Microcosm Study

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Calcium nitrate and a lanthanum-modified bentonite (Phoslock®) were investigated for their ability to control the release of phosphorus from contaminated sediment. Their effectiveness and mode of action were assessed using microcosm experiments by monitoring the variation of physiochemical parameters and phosphorus and nitrogen species over time following the treatment for 66 days. Phoslock® was more effective reducing phosphorus in overlaying water and controlling its release from sediment. Calcium nitrate improved redox condition at the sediment-water interface and temporally reduce phosphorus in overlaying water but phosphorus level returned back in a long run. Phosphorus fractionation suggested that Phoslock® converted mobile phosphorus to more stable species while calcium nitrate increased the fractions of mobile phosphorus species. Phoslock® generally showed no effect on nitrogen species. Whereas calcium nitrate temporally increased nitrate, nitrite, and ammonium concentrations but their concentrations quickly reduced likely due to the denitrification process. Results suggested that Phoslock® can be more effective in controlling the release of phosphorus from sediment than calcium nitrate. However, calcium nitrate can improve the redox condition at the sediment-water interface, which may provide other benefits such as stimulating biodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Burley, K. L., Prepas, E. E., & Chambers, P. A. (2001). Phosphorus release from sediments in hardwater eutrophic lakes: the effects of redox‐sensitive and‐insensitive chemical treatments. Freshwater Biology, 46(8), 1061–1074.

    Article  CAS  Google Scholar 

  • Camargo, J. A., & Alonso, Á. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environment International, 32(6), 831–849.

    Article  CAS  Google Scholar 

  • Carpenter, S. R. (2008). Phosphorus control is critical to mitigating eutrophication. Proceedings of the National Academy of Sciences, 105(32), 11039–11040.

    Article  CAS  Google Scholar 

  • Chen, L., Wang, L., Liu, S., Hu, J., He, Y., Zhou, H., & Zhang, X. (2013). Profiling of microbial community during in situ remediation of volatile sulfide compounds in river sediment with nitrate by high throughput sequencing. International Biodeterioration & Biodegradation, 85, 429–437.

    Article  CAS  Google Scholar 

  • Dodson, S. I., Arnott, S. E., & Cottingham, K. L. (2000). The relationship in lake communities between primary productivity and species richness. Ecology, 81(10), 2662–2679.

    Article  Google Scholar 

  • Foy, R. (1986). Suppression of phosphorus release from lake sediments by the addition of nitrate. Water Research, 20(11), 1345–1351.

    Article  CAS  Google Scholar 

  • García de Lomas, J., Corzo, A., Gonzalez, J. M., Andrades, J. A., Iglesias, E., & Montero, M. J. (2006). Nitrate promotes biological oxidation of sulfide in wastewaters: experiment at plant-scale. Biotechnology and Bioengineering, 93(4), 801–811.

    Article  Google Scholar 

  • Geurts, J. J. M., van de Wouw, P. A. G., Smolder, A. J. P., Roelofs, J. G. M., & Lamers, L. P. M. (2011). Ecological restoration on former agricultural soils: feasibility of in situ phosphate fixation as an alternative to top soil removal. Ecological Engineering, 37(11), 1620–1629.

    Article  Google Scholar 

  • Gibbs, M. M., Hickey, C. W., & Özkundakci, D. (2011). Sustainability assessment and comparison of efficacy of four P-inactivation agents for managing internal phosphorus loads in lakes: sediment incubations. Hydrobiologia, 658(1), 253–275.

    Article  CAS  Google Scholar 

  • Gonsiorczyk, T., Casper, P., & Koschel, R. (1998). Phosphorus-binding forms in the sediment of an oligotrophic and an eutrophic hardwater lake of the Baltic Lake District (Germany). Water Science and Technology, 37(3), 51–58.

    Article  CAS  Google Scholar 

  • Haghseresht, F., Wang, S., & Do, D. D. (2009). A novel lanthanum-modified bentonite, Phoslock, for phosphate removal from wastewaters. Applied Clay Science, 46(4), 369–375.

    Article  CAS  Google Scholar 

  • Hansen, J., Reitzel, K., Jensen, H. S., & Andersen, F. Ø. (2003). Effects of aluminum, iron, oxygen and nitrate additions on phosphorus release from the sediment of a Danish softwater lake. Hydrobiologia, 492(1–3), 139–149.

    Article  CAS  Google Scholar 

  • Hemond, H. F., & Lin, K. (2010). Nitrate suppresses internal phosphorus loading in an eutrophic lake. Water Research, 44(12), 3645–3650.

    Article  CAS  Google Scholar 

  • Hupfer, M., Gachter, R., & Giovanoli, R. (1995). Transformation of phosphorus species in settling seston and during early sediment diagenesis. Aquatic Sciences, 57(4), 305–324.

    Article  Google Scholar 

  • Immers, A. K., Van der Sande, M. T., Van der Zande, R. M., Geurts, J. J. M., Van Donk, E., & Bakker, E. S. (2013). Iron addition as a shallow lake restoration measure: impacts on charophyte growth. Hydrobiologia, 710(1), 241–251.

    Article  CAS  Google Scholar 

  • Jarvie, H. P., Sharpley, A. N., Withers, P. J., Scott, J. T., Haggard, B. E., & Neal, C. (2013). Phosphorus mitigation to control river eutrophication: murky waters, inconvenient truths, and “postnormal” science. Journal of Environmental Quality, 42(2), 295–304.

    Article  CAS  Google Scholar 

  • Jeppesen, E., Søndergaard, M., Jensen, J. P., Havens, K. E., Anneville, O., Carvalho, L., et al. (2005). Lake responses to reduced nutrient loading—an analysis of contemporary long‐term data from 35 case studies. Freshwater Biology, 50(10), 1747–1771.

    Article  CAS  Google Scholar 

  • Jing, L. D., Wu, C. X., Liu, J. T., Wang, H. G., & Ao, H. Y. (2013). The effects of dredging on nitrogen balance in sediment-water microcosms and implications to dredging projects. Ecological Engineering, 52, 167–174.

    Article  Google Scholar 

  • Kaiserli, A., Voutsa, D., & Samara, C. (2002). Phosphorus fractionation in lake sediments—Lakes Volvi and Koronia, N. Greece. Chemosphere, 46(8), 1147–1155.

    Article  CAS  Google Scholar 

  • Kozerski, H. P., & Kleeberg, A. (1998). The sediments and Benthic-Pelagic exchange in the shallow Lake Müggelsee (Berlin, Germany). International Review of Hydrobiology, 83(1), 77–112.

    Article  CAS  Google Scholar 

  • Liu, G., Ye, C., He, J., Qian, Q., & Jiang, H. (2009). Lake sediment treatment with aluminum, iron, calcium and nitrate additives to reduce phosphorus release. Journal of Zhejiang University Science A, 10(9), 1367–1373.

    Article  CAS  Google Scholar 

  • Liu, C., Shen, Q., Zhou, Q., Fan, C., & Shao, S. (2015). Precontrol of algae-induced black blooms through sediment dredging at appropriate depth in a typical eutrophic shallow lake. Ecological Engineering, 77, 139–145.

    Article  Google Scholar 

  • Lürling, M., & van Oosterhout, F. (2013). Case study on the efficacy of a lanthanum-enriched clay (Phoslock®) in controlling eutrophication in Lake Het Groene Eiland (The Netherlands). Hydrobiologia, 710(1), 253–263.

  • McAuliffe, T. F., Lukatelich, R. J., McComb, A. J., & Qiu, S. (1998). Nitrate applications to control phosphorus release from sediments of a shallow eutrophic estuary: an experimental evaluation. Marine and Freshwater Research, 49(6), 463–473.

    Article  CAS  Google Scholar 

  • Meis, S., Spears, B. M., Maberly, S. C., O’Malley, M. B., & Perkins, R. G. (2012). Sediment amendment with Phoslock® in Clatto Reservoir (Dundee, UK): investigating changes in sediment elemental composition and phosphorus fractionation. Journal of Environmental Management, 93(1), 185–193.

    Article  CAS  Google Scholar 

  • Meis, S., Spears, B. M., Maberly, S. C., & Perkins, R. G. (2013). Assessing the mode of action of Phoslock® in the control of phosphorus release from the bed sediments in a shallow lake (Loch Flemington, UK). Water Research, 47(12), 4460–4473.

    Article  CAS  Google Scholar 

  • MEPC. (2002). Standard methods for examination of water and wastewater (4th ed.). Beijing: Chinese Environmental Sciences Press.

    Google Scholar 

  • Murphy, T., Lawson, A., Kumagai, M., & Babin, J. (1999). Review of emerging issues in sediment treatment. Aquatic Ecosystem Health & Management, 2(4), 419–434.

    Article  CAS  Google Scholar 

  • Ottley, C. J., Davison, W., & Edmunds, W. M. (1997). Chemical catalysis of nitrate reduction by iron (II). Geochimica et Cosmochimca Acta, 61, 1819–1828.

    Article  CAS  Google Scholar 

  • Pessot, C. A., Atland, A., Liltved, H., Lobos, M. G., & Kristensen, T. (2014). Water treatment with crushed marble or sodium silicate mitigates combined copper and aluminium toxicity for the early life stages of Atlantic salmon (Salmo salar L.). Aquacultural Engineering, 60, 77–83.

    Article  Google Scholar 

  • Psenner, R., & Pucsko, R. (1988). Phosphorus fractionation: advantages and limits of the method for the study of sediment P origins and interactions. Archiv für Hydrobiologie–Beiheft Ergebnisse der Limnologie, 30, 43–59.

  • Psenner, R., Pucsko, R., & Sager, M. (1984). Die Fraktionierung organischer und anorganischer Phosphorverbindungen von Sedimenten–Versuch einer Definition ökologisch wichtiger Fraktionen. Archiv für Hydrobiologie, Supplement, 70, 111–155.

    CAS  Google Scholar 

  • Ramírez, A., Pringle, C. M., & Molina, L. (2003). Effects of stream phosphorus levels on microbial respiration. Freshwater Biology, 48(1), 88–97.

    Article  Google Scholar 

  • Reitzel, K., Lotter, S., Dubke, M., Egemose, S., Jensen, H. S., & Andersen, F. Ø. (2013). Effects of Phoslock® treatment and chironomids on the exchange of nutrients between sediment and water. Hydrobiologia, 703(1), 189–202.

    Article  CAS  Google Scholar 

  • Ripl, W. (1976). Biochemical oxidation of polluted lake sediment with nitrate: a new lake restoration method. Ambio, 5(3), 132–135.

    CAS  Google Scholar 

  • Robb, M., Greenop, B., Goss, Z., Douglas, G., & Adeney, J. (2003). Application of Phoslock™, an innovative phosphorus binding clay, to two Western Australian waterways: preliminary findings. The Interactions between Sediments and Water (pp. 237–243). Springer.

  • Ross, G., Haghseresht, F., & Cloete, T. E. (2008). The effect of pH and anoxia on the performance of Phoslock®, a phosphorus binding clay. Harmful Algae, 7(4), 545–550.

    Article  Google Scholar 

  • Ruban, V., López-Sánchez, J., Pardo, P., Rauret, G., Muntau, H., & Quevauviller, P. (1999). Selection and evaluation of sequential extraction procedures for the determination of phosphorus forms in lake sediment. Journal of Environmental Monitoring, 1(1), 51–56.

    Article  CAS  Google Scholar 

  • Schauser, I., Chorus, I., & Lewandowski, J. (2006). Effects of nitrate on phosphorus release: comparison of two Berlin lakes. Acta Hydrochimica et Hydrobiologica, 34(4), 325–332.

    Article  CAS  Google Scholar 

  • Shao, M., Zhang, T., & Fang, H. H. (2009). Autotrophic denitrification and its effect on metal speciation during marine sediment remediation. Water Research, 43, 2961–2968.

    Article  CAS  Google Scholar 

  • Smith, V. H. (2003). Eutrophication of freshwater and coastal marine ecosystems—a global problem. Environmental Science and Pollution Research, 10(2), 126–139.

    Article  CAS  Google Scholar 

  • Søndergaard, M., Jeppesen, E., Lauridsen, T. L., Skov, C., Van Nes, E. H., Roijackers, R., Lammens, E., & Portielje, R. (2007). Lake restoration: successes, failures and long‐term effects. Journal of Applied Ecology, 44, 1095–1105.

    Article  Google Scholar 

  • Wang, H., Wang, C., Wu, W., & Wang, Z. (2002). Persistent organic pollutants (POPs) in surface sediments of Donghu Lake, Wuhan, Hubei, China. Journal of Environmental Science and Health, Part A, 37(4), 499–507.

    Article  Google Scholar 

  • Xie, L., & Xie, P. (2002). Long-term (1956–1999) dynamics of phosphorus in a shallow, subtropical Chinese lake with the possible effects of cyanobacterial blooms. Water Research, 36, 343–349.

  • Xu, M. Y., Zhang, Q., Xia, C. Y., Zhong, Y. M., Sun, G. P., Guo, J., Yuan, T., Zhou, J., & He, Z. (2014). Elevated nitrate enriches microbial functional genes for potential bioremediation of complexly contaminated sediments. ISME Journal, 8, 1932–1944.

    Article  CAS  Google Scholar 

  • Yamada, T., Sueitt, A., Beraldo, D., Botta, C., Fadini, P., Nascimento, M., Faria, B. M., & Mozeto, A. A. (2012). Calcium nitrate addition to control the internal load of phosphorus from sediments of a tropical eutrophic reservoir: microcosm experiments. Water Research, 46(19), 6463–6475.

    Article  CAS  Google Scholar 

  • Zhang, M., Zhang, T., Shao, M. F., & Fang, H. (2009). Autotrophic denitrification in nitrate-induced marine sediment remediation and Sulfurimonas denitrificans-like bacteria. Chemosphere, 76, 677–682.

    Article  CAS  Google Scholar 

  • Zhang, S. Y., Zhou, Q. H., Xu, D., Lin, J. D., Cheng, S. P., & Wu, Z. B. (2010). Effects of sediment dredging on water quality and zooplankton community structure in a shallow of eutrophic lake. Journal of Environmental Sciences-China, 22(2), 218–224.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the support from the National Major Science and Technology Projects for Pollution Control and Management (2012ZX07104-002-005, 2012ZX07101-007-002), the Major Scientific and Technological Innovation Projects of the Hangzhou City (20131813A04), and the Science and Technology Project of the Ministry of Housing and Urban–rural Development of China (2014-K7-014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenxi Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Qiu, P., Yan, X. et al. Effectiveness and Mode of Action of Calcium Nitrate and Phoslock® in Phosphorus Control in Contaminated Sediment, a Microcosm Study. Water Air Soil Pollut 226, 330 (2015). https://doi.org/10.1007/s11270-015-2590-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2590-4

Keywords

Navigation