Skip to main content

Phytotoxicity of Phenanthrene and Its Nitrogen Polycyclic Aromatic Hydrocarbon Analogues in Ageing Soil

Abstract

The impacts of phenanthrene and its nitrogen-containing analogues (N-PAHs) on seedling emergence and plant biomass of two terrestrial plant species, Lactuca sativa (lettuce) and Lolium perenne (rye grass), were investigated in soil over a 21-day exposure period. The data over 0–90-day soil-chemical contact time revealed that seedling emergence and plant biomass were significantly affected by N-PAHs even at the lowest concentration of 10 mg/kg. N-PAH amended soils showed greater inhibitory effects on seedling emergence and early plant biomass than phenanthrene amendments with incubations overtime. The degree of inhibition (% inhibition) on seedling emergence over time was 33.3 % (lettuce) and 46.7 % (rye grass) for the phenanthrene, and 53.3 % (lettuce) and 93.3 % (rye grass) for the N-PAHs, respectively, suggesting greater sensitivity of seedling emergence and early plant biomass on N-PAH-contaminated soil. The results from this study will contribute to data gaps for poorly managed chemicals/chemical groups for environmental risk assessment and might be useful in the development of new approaches for hazard assessment of contaminated systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Aharoni, C., & Sparks, D. L. (1991). Kinetics of soil chemical reactions—a theoretical treatment. In D. L. Sparks & D. L. Suarez (Eds.), Rates of soil chemical processes (pp. 1–19). Madison, WI: SSSA.

    Google Scholar 

  • Anyanwu, I. N., & Semple, K. T. (2015a). Fate and behaviour of nitrogen-containing polycyclic aromatic hydrocarbons in soil. Environmental Technology and Innovation, 3, 108–120.

    Article  Google Scholar 

  • Anyanwu, I. N., & Semple, K. T. (2015b). Biodegradation of phenanthrene-nitrogen-containing analogues in soil. Water, Air, and Soil Pollution, 226, 1–10.

    Google Scholar 

  • Anyanwu, I.N., Clifford, O.I., & Semple, K.T. (2013). Effects of three ringed PAH and N-PAHs on earthworm (E. fetida) in soil. Proceedings of the international conference on environmental pollution and remediation. Ontario, Canada. International Academy of Science Engineering and Technology, p. 57.

  • Bleeker, E. A. J., Wiegman, S., Kraak, M., de Voogt, P., Leslie, H. A., Haas, E., & Admiraal, W. (2002). Toxicity of azaarenes. Reviews of Environmental Contamination and Toxicology, 173, 39–83.

    Google Scholar 

  • Blumer, M., Dorsey, T., & Sass, J. (1977). Azaarenes in recent marine sediments. Science, 195, 283–285.

    CAS  Article  Google Scholar 

  • Broholm, M. M., Broholm, K., & Arvin, E. (1999). Sorption of heterocyclic compounds on natural clay till. Journal of Contaminant Hydrology, 39, 183–200.

    CAS  Article  Google Scholar 

  • Chaîneau, C. H., Morel, J. L., & Outdot, J. (1997). Phytotoxicity and plant uptake of fuel oil hydrocarbons. Journal of Environmental Quality, 26, 1478–1483.

    Article  Google Scholar 

  • Chung, M. K., Hu, R., Wong, M. H., & Cheung, K. C. (2007). Comparative toxicity of hydrophobic contaminants to microalgae and higher plants. Ecotoxicology, 16, 393–402.

    CAS  Article  Google Scholar 

  • De Voogt, P., & Laane, R. W. P. W. (2009). Assessment of azaarenes and azaarones (oxidized azaarene derivatives) in the Dutch coastal zone of the North Sea. Chemosphere, 76, 1067–1074.

    Article  Google Scholar 

  • Dijkman, N. A., Van Vlaardingen, P. L. A., & Admiraal, W. A. (1997). Biological variation in sensitivity to N-heterocyclic PAHs; effects of acridine on seven species of micro-algae. Environmental Pollution, 95, 121–126.

    CAS  Article  Google Scholar 

  • Diock, K. J., Lee, P. H., & Semple, K. T. (2003). Assessment of spiking procedures for the introduction of a phenanthrene-LNAPL mixture into field-wet soil. Environmental Pollution, 126, 399–406.

    Article  Google Scholar 

  • Environment Canada (2011). Risk management scope for quinoline. Chemical Abstract Service Registry Number (CAS RN): 91-22-5. Available from: http://www.ec.gc.ca/ese-ees/default.asp?lang

  • Eom, I. C., Rast, C., Veber, A. M., & Vasseur, P. (2007). Ecotoxicity of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Ecotoxicology and Environmental Safety, 67, 190–205.

    CAS  Article  Google Scholar 

  • Fernández, M. D., Cagigal, E., Vega, M. M., Urzelai, A., Babín, M., Pro, J., & Tarazona, J. V. (2005). Ecological risk assessment of contaminated soils through direct toxicity assessment. Ecotoxicology and Environment Safety, 62, 174–184.

    Article  Google Scholar 

  • Gissel-Nielson, G., & Nielson, T. (1996). Phytotoxicity of acridine, an important representative of a group of tar and creosote contaminants, N-PAC compounds. Polycyclic Aromatic Compounds, 8, 243–249.

    Article  Google Scholar 

  • Henner, P., Schiavon, M., Druelle, V., & Lichtfouse, E. (1999). Phytotoxicity of ancient gaswork soils. Effect of polycyclic aromatic hydrocarbons (PAHs) on plant germination. Organic Geochemistry, 30, 963–969.

    CAS  Article  Google Scholar 

  • Hulzebos, E. M., Adema, D. M. M., Dirven-van Breemen, E. M., Henzen, L., van Dis, W. A., Herbold, H. A., & Hoekstra, J. A. (1993). Phytotoxcity studies with lactuca sativa in soil and nutrient solution. Environmental Toxicology and Chemistry, 12, 1079–1094.

    CAS  Article  Google Scholar 

  • Korade, D. L., & Fulekar, M. H. (2009). Effect of organic contaminants on seed germination of Lolium multiflorum in soil. Biology and Medicine, 1, 28–34.

    CAS  Google Scholar 

  • León, P. M., de Voogt, P., van Gestel, C. A. M., & Kraak, M. H. S. (2009). Comparative chronic toxicity of homo- and heterocyclic aromatic compounds to benthic and terrestrial invertebrates: generalizations and exceptions. Science of the Total Environment, 407, 4605–4609.

    Article  Google Scholar 

  • León, P. M., Stol, P., Kraak, M. H. S., van Gestel, C. A. M., & Admiraal, W. (2008). Chronic exposure of the oligochaete Lumbriculus variegatus to polycyclic aromatic compounds (PACs): bioavailability and effects on reproduction. Environmental Science and Technology, 42, 3434–3440.

    Article  Google Scholar 

  • Liste, H. H., & Prutz, I. (2006). Plant performance, dioxygenase-expressing rhizosphere bacteria, and biodegradation of weathered hydrocarbons in contaminated soil. Chemosphere, 62, 1411–1420.

    CAS  Article  Google Scholar 

  • MacKinnon, G., & Duncan, H. J. (2013). Phytotoxicity of branched cyclohexanes found in volatile fraction of diesel fuel on germination of selected grass species. Chemosphere, 90, 952–957.

    CAS  Article  Google Scholar 

  • Marques, M., Rosa, G. S., Aguiar, C. R. C., Correia, S. M., & Carvalho, E. M. (2010). Seedling emergence and biomass growth of oleaginous and other tropical species in oil contaminated soil. The Open Waste Management Journal, 3, 26–32.

    CAS  Article  Google Scholar 

  • OECD. (2006). Guideline draft 208 for the testing of chemicals. Terrestrial plant test: seedling emergence and seedling growth test. Paris, France: Organization for Economic Co-operation and Development.

    Google Scholar 

  • Pašková, V., Hilscherová, K., Feldmannová, M., & Bláha, L. (2006). Toxic effects and oxidative stress in higher plants exposed to polycyclic aromatic hydrocarbons and their N-heterocyclic derivatives. Environmental Toxicology and Chemistry, 25, 3238–3245.

    Article  Google Scholar 

  • Pereira, R. R., Monterroso, C., & Macías, F. (2010). Phytotoxicity of hexachloro-cyclohexane: effect on germination and early growth of different plant species. Chemosphere, 79, 326–333.

    Article  Google Scholar 

  • Semple, K. T., Doick, K. J., Wick, L. Y., & Harms, H. (2007). Microbial interactions with organic contaminants in soil: definitions, processes and measurement. Environmental Pollution, 150, 166–176.

    CAS  Article  Google Scholar 

  • Semple, K. T., Doick, K. J., Burauel, P., Craven, A., Harms, H., & Jones, K. C. (2004). Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environmental Science and Technology, 38, 228a–231a.

    CAS  Article  Google Scholar 

  • Smith, M. J., Flowers, T. H., Duncan, H. J., & Alder, J. (2006). Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues. Environmental Pollution, 141, 519–525.

    CAS  Article  Google Scholar 

  • Sverdrup, L. E., Krogh, P. H., Nielson, T., Kjaer, C., & Stenersen, J. (2003). Toxicity of eight polycyclic aromatic compounds to red clover (Trifolium pratense), rye-grass (Lolium perenne), and mustard (Sinapsis alba). Chemosphere, 53, 993–1003.

    CAS  Article  Google Scholar 

  • United States Environment Protection Agency. (1996). Ecological effect test guidelines. Seed germination / root elongation toxicity test, OPPTS, 850, 4200.

    Google Scholar 

Download references

Acknowledgments

The authors thank the Petroleum Technology Development Fund (PTDF), Nigeria, for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihuoma N. Anyanwu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anyanwu, I.N., Semple, K.T. Phytotoxicity of Phenanthrene and Its Nitrogen Polycyclic Aromatic Hydrocarbon Analogues in Ageing Soil. Water Air Soil Pollut 226, 347 (2015). https://doi.org/10.1007/s11270-015-2589-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2589-x

Keywords

  • Phytotoxicity
  • Bioavailability
  • Seedling emergence
  • Biomass
  • Nitrogen-containing PAHs