Skip to main content
Log in

Bioremediation of a Benzo[a]Pyrene-Contaminated Soil Using a Microbial Consortium with Pseudomonas aeruginosa, Candida albicans, Aspergillus flavus, and Fusarium sp.

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Many studies have been conducted regarding the degradation of PAHs. One of the technologies that has been widely used is bioremediation due to its relatively low cost and greater efficiency for those compounds with structural complexity. Biotechnology has been used in several countries for many years and consists in the use of microorganisms (bacteria and fungi) to transform contaminants into inert substances, which is a result of the microbial activity from biochemical processes. This study aimed to develop a bioremediation methodology for the pollutant benzo[a]pyrene (B[a]P), which belongs to the group of PAHs. The potential use of a microbial consortium with Pseudomonas aeruginosa, Candida albicans, Aspergillus flavus, and Fusarium sp. for bioremediation was assessed. To confirm the pollutant reduction, quantifications of the samples were performed via gas chromatography–mass spectrometry (GC-MS). The contamination was prepared with a soil previously contaminated with B[a]P at the concentration of 3.74 mg kg−1. The microbial consortium was added (16 μL g−1), and samples were incubated for 42 days in an oven at 35 °C. The microbial growth curves showed representative differences between the samples in the presence and absence of the pollutant, demonstrating the possibility of bioremediation process. The final quantification of soil showed a mean concentration of 1.29 mg kg−1, showed that 65.51 ± 0.95 % of the pollutant was degraded, which is an important and representative performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aitken, M. D., Stringfellow, W. T., Nagel, R. D., Kazunga, C., & Chen, S. H. (1998). Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated with polycyclic aromatic hydrocarbons. Canadian Journal of Microbiology, 44, 743–752.

    Article  CAS  Google Scholar 

  • Andrade, J. A., Augusto, F., & Jardim, I. C. S. F. (2010). Biorremediação de solos contaminados por petróleo e seus derivados. Ecletica Quimica, 35, 23–29.

    Article  Google Scholar 

  • APHA. (1992). American Public Health Association. Standard methods for the examination of dairy products. 16th. Washington: APHA. 546p.

    Google Scholar 

  • Bioquell Microbiology (2013). Online at: http://fitopatologia1.blogspot.com.br/2010/04/aspectos-gerais-e-morfologicos-do-fungo_22.html. Accessed in July 2013.

  • Cavalcante, R. M. (2007). Otimização de metodologias de extração e análises de HPAs para determinação da distribuição ambiental e estimativa de fontes na cidade de Fortaleza. PhD thesis, Federal University of Ceará, Brazil.

  • Cavalcante, R. M., Lima, D. M., Correia, L. M., & Nascimento, R. F. (2008). Técnicas de extrações e procedimentos de clean-up para a determinação de Hidrocarbonetos Policíclicos Aromáticos (HPA) em sedimentos da costa do Ceará. Quimica Nova, 31, 1371–1377.

    Article  CAS  Google Scholar 

  • Chen, W., Wu, J., Lin, Y., Huang, H., & Chang, J. (2013). Bioremediation potential of soil contaminated with highly substituted polychlorinated dibenzo-ρ-doixins and dibenzofurans: Microcosm study and microbial community analysis. Journal of Hazardous Materials, 261, 351–361.

    Article  CAS  Google Scholar 

  • Colombo, M., Cavalca, L., Bernasconi, S., & Andreoni, V. (2011). Bioremediation of polyaromatic hydrocarbon contaminated soils by native microflora and bioaugmentation with Sphingobium chlorophenolicum strain C3R: a feasibility study in solid- and slurry-phase microcosms. International Biodeterioration and Biodegradation, 65, 191–197.

    Article  CAS  Google Scholar 

  • CETESB—Companhia Ambiental do Estado de São Paulo (2013) State law, online at: http://www.cetesb.sp.gov.br/. Accessed in July 2013.

  • Díaz, E. (2004). Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. International Microbiology, 7, 173–180.

    Google Scholar 

  • Fernandes, M. B., Brickus, L. S. R., Moreira, J. C., & Cardoso, J. N. (2002). Atmospheric BTX and polyaromatic hydrocarbons in Rio de Janeiro, Brazil. Chemosphere, 47, 417–425.

    Article  CAS  Google Scholar 

  • Finlayson-Pitts, B. J., & Pitts, J. N., Jr. (1997). Tropospheric air pollution: Ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. Science, 276, 1045–1051.

  • Foght, J. (2008). Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects. Journal of Molecular Microbiology and Biotechnology, 15, 93–120.

    Article  CAS  Google Scholar 

  • Gan, S., Lau, E. V., & Ng, H. N. (2009). Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Journal of Hazardous Materials, 172, 532–549.

    Article  CAS  Google Scholar 

  • Haritash, A. K., & Kaushik, C. P. (2009). Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): a review. Journal of Hazardous Materials, 169, 1–15.

    Article  CAS  Google Scholar 

  • Helaleh, M. I. H., Al-omair, A., Nisan, A., & Gevao, B. (2005). Validation of various extraction techniques for the quantitative analysis of polycyclic aromatic hydrocarbons in sewage sludges using gas chromatography—ion trap mass spectrometry. Journal Chromatography, 1083, 153–160.

    Article  CAS  Google Scholar 

  • Jacques, R. J. S. (2005). Biorremediação de Antraceno, Fenantreno e Pireno em um argissolo. PhD thesis, Federal University of Rio Grande do Sul, Brazil.

  • Jacques, J. S., Okeke, C., Bento, M., Peralba, C. R., & Camargo, A. O. (2007). Characterizationof a polycyclic aromatic hydrocarbon-degrading microbial consortium from a petrochemical sludge landfarming site. Bioremediation Journal, 11, 1–11.

    Article  CAS  Google Scholar 

  • Jacques, R. J. S., Silva, K. J., Bento, F. M., & Camargo, F. A. O. (2010). Biorremediação de um solo contaminado com antraceno sob diferentes condições físico-químicas. Ciência Rural 40, 310–317.

  • Johnsen, A. R., Wick, L. Y., & Harms, H. (2005). Principles of microbial PAH-degradation in soil. Environmental Pollution, 133, 71–84.

    Article  CAS  Google Scholar 

  • Mao, J., Luo, Y., Teng, Y., & Li, Z. (2012). Bioremediation of polycyclic aromatic hydrocarbon-contaminated soil by a bacterial consortium and associated microbial community changes. International Biodeterioration & Biodegradation, 70, 141–147.

    Article  CAS  Google Scholar 

  • CONAMA—Conselho Nacional do Meio Ambiente (2013). Brazilian law, online at: http://www.mma.gov.br/port/conama/. Accessed in July 2013.

  • Meire, R. O., Azeredo, A., & Torres, J. P. M. (2007). Aspectos ecotoxicológicos de hidrocarbonetos policíclicos aromáticos. Oecologia Brasiliensis, 12, 188–200.

    Article  Google Scholar 

  • Miranda, V. J. M. (2008). Degradação de naftaleno, fenantreno, e benzo[a]pireno em solos e sedimentos de ambientes costeiros, oceânicos e antárticos. Master’s thesis, Federal University of Viçosa, Minas Gerais, Brazil.

  • Mohandass, R., Rout, P., Jinwal, S., & Sasikala, C. (2012). Biodegradation of Benzo[a]pyrene by the mixed culture of Bacillus cereus and Bacillus vireti isolated from the petrochemical industry. Journal of Environmental Biology, 33(6), 985–9.

    CAS  Google Scholar 

  • Pelaez, A. I., Lores, I., Sotres, A., Mendez-Garcia, C., Fernandez-Velarde, C., Santos, J. A., Gallego, J. L. R., & Sanchez, J. (2013). Design and field-scale implementation of an “on-site” bioremediation treatment in PAH-polluted soil. Environmental Pollution, 181, 190–199.

    Article  CAS  Google Scholar 

  • Romero, M. C., Cazau, M. C., Giorgieri, S., & Arambarri, A. M. (1998). Phenanthrene degradation by microorganisms isolated from a contaminated stream. Environmental Pollution, 101, 355–359.

    Article  CAS  Google Scholar 

  • Ruberto, A. M., Velasquez, S. C., & Curtosi, A. (2006). Phenanthrene biodegradation in soil using an Antartic bacterial consortium. Bioremediation Journal, 10, 191–201.

    Article  CAS  Google Scholar 

  • Samanta, S. K., Singh, O. V., & Jain, R. K. (2002). Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends in Biotechnology, 6, 243–247.

    Article  Google Scholar 

  • Sayara, T., Sarrà, M., & Sánchez, A. (2010). Effect of compost stability and contaminant concentration on the bioremediation of PAHs-contamined soil through composting. Journal of Hazardous Materials, 179, 199–1006.

    Article  Google Scholar 

  • Silva, I. S., Grossman, M., & Durrant, L. R. (2009). Degradation of polycyclic aromatic hydrocarbons (2–7 rings) under microaerobic and very-low-oxygen conditions by soil fungi. International Biodeterioration & Biodegradation, 63, 224–229.

    Article  CAS  Google Scholar 

  • Song, Y. F., Jing, X., Fleischmann, S., & Wilke, B. M. (2002). Comparative study of extraction methods for the determination of PAHs from contaminated soil and sediments. Chemosphere, 48, 993–1001.

    Article  CAS  Google Scholar 

  • Tonini, R. M. C. W., Rezende, C. E., & Grativol, A. D. (2010). Degradação e Biorremediação de compostos do petróleo por bacteria: Revisão. Oecologia Australis, 14, 1025–1035.

    Article  Google Scholar 

  • Waszak, D. Q. (2010). Estudo de viabilidade de um processo de biorremediação em solo contaminado por Hidrocarboneto Policíclico Aromático Benzo[a]pireno. Unisalle: Centro Universitário La Salle. Undergraduated work.

    Google Scholar 

  • Wester, P. W., Muller, J. J. A., Slob, W., Mohn, G. R., Dortant, P. M., & Kroese, E. D. (2011). Carcinogenic activity of benzo[a]pyrene in a 2 year oral study in Wistar rats. Food and Chemical Toxicology, 50, 927–935.

    Article  Google Scholar 

  • Winquist, E., Björklöf, K., Schultz, E., Räsänen, M., Salonen, K., Anasonye, F., Cajthaml, T., Steffen, K. T., Jorgensen, K. S., & Tuomela, M. (2014). Bioremediation of PAH-contaminated soil with fungi—from laboratory to field scale. International Biodeterioration & Biodegradation, 86, 238–247.

    Article  CAS  Google Scholar 

  • Zhang, J., Lin, X., Liu, W., Wang, Y., Zeng, J., & Chen, H. (2011). Effect of organic wastes on the plant-microbe remediation for removal of aged PAHs in soils. Journal of Environmental Sciences, 24, 1476–1482.

    Article  Google Scholar 

  • Zhu, L., Lu, L., & Zhang, D. (2010). Mitigation and remediation technologies for organic contaminated soils. Frontiers of Environmental Science & Engineering in China, 4, 373–386.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Council for Scientific and Technologic Development (CNPq), the Finep Technological Innovation and the Research Support Foundation of the State of Rio Grande do Sul (FAPERGS) for granting the master’s scholarship and financial support for the implementation of this work. The authors also would like to thank the Mineral Processing Laboratory (LAPROM) and the Coal Network for the laboratories available to develop this study, and Microbiology Center of the Federal University of Health Sciences of Porto Alegre (UFCSPA) for providing the microbial consortia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dafne Q. Waszak.

Additional information

Ana Cristina B. da Cunha contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waszak, D.Q., da Cunha, A.C.B., Agarrallua, M.R.A. et al. Bioremediation of a Benzo[a]Pyrene-Contaminated Soil Using a Microbial Consortium with Pseudomonas aeruginosa, Candida albicans, Aspergillus flavus, and Fusarium sp.. Water Air Soil Pollut 226, 319 (2015). https://doi.org/10.1007/s11270-015-2582-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2582-4

Keywords

Navigation