Skip to main content
Log in

Phosphate Adsorption onto Granular-Acid-Activated-Neutralized Red Mud: Parameter Optimization, Kinetics, Isotherms, and Mechanism Analysis

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Powdered-acid-activated-neutralized red mud (Aan-RM), the chemico-physically modified product of red mud, was for the first time employed with hydroxypropyl methylcellulose and powdered straw as the main ingredients for granular Aan-RM production for phosphate removal. In order to better understand the phosphate adsorption characteristics of granular Aan-RM, the influence of operational parameters on the performance of granular Aan-RM and the possible adsorption mechanisms involved were investigated. The results demonstrated that the adsorbent dosage, adsorption temperature, and initial solution pH influenced the adsorption performance of granular Aan-RM significantly. The maximum phosphate adsorption capacity of granular Aan-RM reached 153.227 mg/g with the granular Aan-RM dosage of 3.0 g/L, adsorption temperature of 40 °C, and initial solution pH of 6.0. The whole adsorption process was well described by nth-order kinetic model and Langmuir–Freundlich isotherm. Meanwhile, X-ray photoelectron spectroscopy (XPS) analysis of P 2p peak on granular Aan-RM after phosphate adsorption demonstrated that 79.01 % of the phosphate was adsorbed through precipitation and ion exchange mechanisms with strong chemical bonds, and 20.99 % of the phosphate was adsorbed through surface deposition mechanism with weak chemical bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Angove, M. J., Johnson, B. B., & Wells, J. D. (1998). The influence of temperature on the adsorption of cadmium (II) and cobalt (II) on kaolinite. Journal of Colloid and Interface Science, 204(1), 93–103.

    Article  CAS  Google Scholar 

  • Babatunde, A. O., Zhao, Y. Q., Yang, Y., & Kearney, P. (2008). Reuse of dewatered aluminium-coagulated water treatment residual to immobilize phosphorus: Batch and column trials using a condensed phosphate. Chemical Engineering Journal, 136(2-3), 108–115.

    Article  CAS  Google Scholar 

  • Barbaux, Y., Dekiouk, M., Le Maguer, D., Gengembre, L., Huchette, D., & Grimblot, J. (1992). Bulk and surface analysis of a Fe-PO oxydehydrogenation catalyst. Applied Catalysis A: General, 90(1), 51–60.

    Article  CAS  Google Scholar 

  • Barca, C., Gerente, C., Meyer, D., Chazarenc, F., & Andres, Y. (2012). Phosphate removal from synthetic and real wastewater using steel slags produced in Europe. Water Research, 46(7), 2376–2384.

    Article  CAS  Google Scholar 

  • Castaldi, P., Silvetti, M., Garau, G., & Deiana, S. (2010). Influence of the pH on the accumulation of phosphate by red mud (a bauxite ore processing waste). Journal of Hazardous Materials, 182(1), 266–272.

    Article  CAS  Google Scholar 

  • Despland, L. M., Clark, M. W., Vancov, T., Erler, D., & Aragno, M. (2011). Nutrient and trace-metal removal by Bauxsol pellets in wastewater treatment. Environmental Science & Technology, 45(13), 5746–5753.

    Article  CAS  Google Scholar 

  • Dou, X., Mohan, D., & Pittman, C. U. (2013). Arsenate adsorption on three types of granular schwertmannite. Water Research, 47(9), 2938–2948.

    Article  CAS  Google Scholar 

  • Genç-Fuhrman, H., Tjell, J. C., & McConchie, D. (2004). Adsorption of arsenic from water using activated neutralized red mud. Environmental Science & Technology, 38(8), 2428–2434.

    Article  Google Scholar 

  • Gerente, C., Lee, V. K. C., Le Cloirec, P., & McKay, G. (2007). Application of chitosan for the removal of metals from wastewaters by adsorption-mechanisms and models review. Critical Reviews in Environmental Science and Technology, 37, 41–127.

    Article  CAS  Google Scholar 

  • Grossl, P. R., Eick, M., Sparks, D. L., Goldberg, S., & Ainsworth, C. C. (1997). Arsenate and chromate retention mechanisms on goethite. 2. Kinetic evaluation using a pressure-jump relaxation technique. Environmental Science & Technology, 31(2), 321–326.

    Article  CAS  Google Scholar 

  • Huang, W., Wang, S., Zhu, Z., Li, L., Yao, X., Rudolph, V., & Haghseresht, F. (2008). Phosphate removal from wastewater using red mud. Journal of Hazardous Materials, 158(1), 35–42.

    Article  CAS  Google Scholar 

  • Hui, B., Zhang, Y., & Ye, L. (2014). Preparation of PVA hydrogel beads and adsorption mechanism for advanced phosphate removal. Chemical Engineering Journal, 235, 207–214.

    Article  CAS  Google Scholar 

  • Kim, G. J., Hyun Kim, J., Moon, H. S., Chon, C. M., & Sung Ahn, J. (2002). Removal capacity of water plant alum sludge for phosphorus in aqueous solutions. Chemical Speciation & Bioavailability, 14(1-4), 67–73.

    Article  Google Scholar 

  • Liu, C. J., Li, Y. Z., Luan, Z. K., Chen, Z. Y., Zhang, Z. G., & Jia, Z. P. (2007). Adsorption removal of phosphate from aqueous solution by active red mud. Journal of Environmental Sciences, 19(10), 1166–1170.

    Article  CAS  Google Scholar 

  • Liu, H., Sha, W., Cooper, A. T., & Fan, M. (2009). Preparation and characterization of a novel silica aerogel as adsorbent for toxic organic compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 347(1), 38–44.

    Article  CAS  Google Scholar 

  • Luengo, C., Brigante, M., & Avena, M. (2007). Adsorption kinetics of phosphate and arsenate on goethite. A comparative study. Journal of Colloid and Interface Science, 311(2), 354–360.

    Article  CAS  Google Scholar 

  • Ma, Y., Wang, S. G., Fan, M., Gong, W. X., & Gao, B. Y. (2009). Characteristics and defluoridation performance of granular activated carbons coated with manganese oxides. Journal of Hazardous Materials, 168(2), 1140–1146.

    Article  CAS  Google Scholar 

  • Meshko, V., Markovska, L., Mincheva, M., & Rodrigues, A. E. (2001). Adsorption of basic dyes on granular activated carbon and natural zeolite. Water Research, 35(14), 3357–3366.

    Article  CAS  Google Scholar 

  • Milačič, R., Zuliani, T., & Ščančar, J. (2012). Environmental impact of toxic elements in red mud studied by fractionation and speciation procedures. Science of the Total Environment, 426, 359–365.

    Article  Google Scholar 

  • Mohana, S., Acharya, B. K., & Madamwar, D. (2009). Distillery spent wash: treatment technologies and potential applications. Journal of Hazardous Materials, 163(1), 12–25.

    Article  CAS  Google Scholar 

  • Paerl, H. W., & Huisman, J. (2008). Blooms like it hot. Science, 320(5872), 57.

    Article  CAS  Google Scholar 

  • Pandey, R. A., Malhotra, A., Tankhiwale, S., Pande, S., Pathe, P. P., & Kaul, S. N. (2003). Treatment of biologically treated distillery effluent—a case study. International Journal of Environmental Studies, 60(3), 263–275.

    Article  CAS  Google Scholar 

  • Pradhan, J., Das, S. N., & Thakur, R. S. (1999). Adsorption of hexavalent chromium from aqueous solution by using activated red mud. Journal of Colloid and Interface Science, 217(1), 137–141.

    Article  CAS  Google Scholar 

  • Riebe, B., Dultz, S., & Bunnenberg, C. (2005). Temperature effects on iodine adsorption on organo-clay minerals: I. Influence of pretreatment and adsorption temperature. Applied Clay Science, 28(1), 9–16.

    Article  CAS  Google Scholar 

  • Schreiber, B., Brinkmann, T., Schmalz, V., & Worch, E. (2005). Adsorption of dissolved organic matter onto activated carbon—the influence of temperature, absorption wavelength, and molecular size. Water Research, 39(15), 3449–3456.

    Article  CAS  Google Scholar 

  • Selvi, K., Pattabhi, S., & Kadirvelu, K. (2001). Removal of Cr (VI) from aqueous solution by adsorption onto activated carbon. Bioresource Technology, 80(1), 87–89.

    Article  CAS  Google Scholar 

  • Sohsalam, P., & Sirianuntapiboon, S. (2008). Feasibility of using constructed wetland treatment for molasses wastewater treatment. Bioresource Technology, 99(13), 5610–5616.

    Article  CAS  Google Scholar 

  • Sowmya, A., & Meenakshi, S. (2014). A novel quaternized resin with acrylonitrile/divinylbenzene/vinylbenzyl chloride skeleton for the removal of nitrate and phosphate. Chemical Engineering Journal, 257, 45–55.

    Article  CAS  Google Scholar 

  • Vanderkooi, G. (1983). Crystal-refined hydrogen-bond potentials for interactions involving the phosphate group. The Journal of Physical Chemistry, 87(25), 5121–5129.

    Article  CAS  Google Scholar 

  • Vymazal, J. (2014). Constructed wetlands for treatment of industrial wastewaters: a review. Ecological Engineering, 73, 724–751.

    Article  Google Scholar 

  • Yahyaei, B., Azizian, S., Mohammadzadeh, A., & Pajohi-Alamoti, M. (2014). Preparation of clay/alumina and clay/alumina/Ag nanoparticle composites for chemical and bacterial treatment of waste water. Chemical Engineering Journal, 247, 16–24.

    Article  CAS  Google Scholar 

  • Yao, Y., Gao, B., Chen, J., & Yang, L. (2013). Engineered biochar reclaiming phosphate from aqueous solutions: mechanisms and potential application as a slow-release fertilizer. Environmental Science & Technology, 47(15), 8700–8708.

    CAS  Google Scholar 

  • Yao, Y., Gao, B., Inyang, M., Zimmerman, A. R., Cao, X., Pullammanappallil, P., & Yang, L. (2011a). Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential. Bioresource Technology, 102(10), 6273–6278.

    Article  CAS  Google Scholar 

  • Yao, Y., Gao, B., Inyang, M., Zimmerman, A. R., Cao, X., Pullammanappallil, P., & Yang, L. (2011b). Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. Journal of Hazardous Materials, 190(1), 501–507.

    Article  CAS  Google Scholar 

  • Ye, J., Zhang, P., Hoffmann, E., Zeng, G., Tang, Y., Dresely, J., & Liu, Y. (2014). Comparison of response surface methodology and artificial neural network in optimization and prediction of acid activation of bauxsol for phosphorus adsorption. Water, Air, & Soil Pollution, 225(12), 1–11.

    Article  CAS  Google Scholar 

  • Yoon, S. Y., Lee, C. G., Park, J. A., Kim, J. H., Kim, S. B., Lee, S. H., & Choi, J. W. (2014). Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles. Chemical Engineering Journal, 236, 341–347.

    Article  CAS  Google Scholar 

  • Zhang, J., & Stanforth, R. (2005). Slow adsorption reaction between arsenic species and goethite (α-FeOOH): diffusion or heterogeneous surface reaction control. Langmuir, 21(7), 2895–2901.

    Article  CAS  Google Scholar 

  • Zhao, Y., Wang, J., Luan, Z., Peng, X., Liang, Z., & Shi, L. (2009). Removal of phosphate from aqueous solution by red mud using a factorial design. Journal of Hazardous Materials, 165(1), 1193–1199.

    Article  CAS  Google Scholar 

  • Zhao, Y., Yue, Q., Li, Q., Xu, X., Yang, Z., Wang, X., Gao, B., & Yu, H. (2012). Characterization of red mud granular adsorbent (RMGA) and its performance on phosphate removal from aqueous solution. Chemical Engineering Journal, 193, 161–168.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the China Scholarship Council (CSC), the National Natural Science Foundation of China (51178047, 51378190, 51039001), and Furong Scholar of Hunan Province for support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Panyue Zhang or Erhard Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Cong, X., Zhang, P. et al. Phosphate Adsorption onto Granular-Acid-Activated-Neutralized Red Mud: Parameter Optimization, Kinetics, Isotherms, and Mechanism Analysis. Water Air Soil Pollut 226, 306 (2015). https://doi.org/10.1007/s11270-015-2577-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2577-1

Keywords

Navigation