Skip to main content
Log in

Vortex- and Shaker-Assisted Liquid–Liquid Microextraction (VSA-LLME) Coupled with Gas Chromatography and Mass Spectrometry (GC-MS) for Analysis of 16 Polycyclic Aromatic Hydrocarbons (PAHs) in Offshore Produced Water

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A simple, cost-effective, and efficient pretreatment method, namely, vortex- and shaker-assisted liquid–liquid microextraction (VSA-LLME) coupled with gas chromatography and mass spectrometry (GC-MS), is developed for determining 16 trace-level polycyclic aromatic hydrocarbons (PAHs) in offshore produced water. The parameters affecting the VSA-LLME performance including solvent volume, ion strength, shaking time, and centrifuge speed were optimized. Under the optimized condition, the enrichment factors range between 68 and 78. The method linearities (R 2) for all 16 PAHs were above 0.99 at concentration range between 10 and 200 ng/L. The recoveries of the method were 74–85 %, and the limits of detection were as low as 2 to 5 ng/L. The relative standard deviations (RSD%) were 6~11 %. The developed method was also validated in industrial wastewater sample and showed good capability in determination of 16 PAHs in offshore produced water. The developed method offers advantages including simplicity of operation, low cast, and high sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arthur, C. L., & Pawliszyn, J. (1990). Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical Chemistry, 62(19), 2145–2148. doi:10.1021/ac00218a019.

    Article  CAS  Google Scholar 

  • Casas, V., Llompart, M., García-Jares, C., Cela, R., & Dagnac, T. (2006). Multivariate optimization of the factors influencing the solid-phase microextraction of pyrethroid pesticides in water. Journal of Chromatography A, 1124(1–2), 148–156. doi:10.1016/j.chroma.2006.06.034.

    Article  CAS  Google Scholar 

  • Charalabaki, M., Psillakis, E., Mantzavinos, D., & Kalogerakis, N. (2005). Analysis of polycyclic aromatic hydrocarbons in wastewater treatment plant effluents using hollow fibre liquid-phase microextraction. Chemosphere, 60(5), 690–698. doi:10.1016/j.chemosphere.2005.01.040.

    Article  CAS  Google Scholar 

  • Clark, C. E., & Veil, J. A. (2009). Produced Water Volumes and Management Practices in the United States. Argonne National Laboratory Report.

  • Delgado, B., Pino, V., Ayala, J. H., González, V., & Afonso, A. M. (2004). Nonionic surfactant mixtures: a new cloud-point extraction approach for the determination of PAHs in seawater using HPLC with fluorimetric detection. Analytica Chimica Acta, 518(1–2), 165–172. doi:10.1016/j.aca.2004.05.005.

    Article  CAS  Google Scholar 

  • Dietz, C., Sanz, J., & Cámara, C. (2006). Recent developments in solid-phase microextraction coatings and related techniques. Journal of Chromatography A, 1103(2), 183–192. doi:10.1016/j.chroma.2005.11.041.

    Article  CAS  Google Scholar 

  • Donthuan, J., Yunchalard, S., & Srijaranai, S. (2014). Ultrasound-assisted dispersive liquid–liquid microextraction combined with high performance liquid chromatography for sensitive determination of five biogenic amines in fermented fish samples. Analytical Methods, 6(4), 1128–1134. doi:10.1039/c3ay41572d.

    Article  CAS  Google Scholar 

  • Dórea, H. S., Bispo, J. R. L., Aragão, K. A. S., Cunha, B. B., Navickiene, S., Alves, J. P. H., et al. (2007). Analysis of BTEX, PAHs and metals in the oilfield produced water in the State of Sergipe, Brazil. Microchemical Journal, 85(2), 234–238. doi:10.1016/j.microc.2006.06.002.

    Article  Google Scholar 

  • Fakhru’l-Razi, A., Pendashteh, A., Abdullah, L. C., Biak, D. R. A., Madaeni, S. S., & Abidin, Z. Z. (2009). Review of technologies for oil and gas produced water treatment. Journal of Hazardous Materials, 170(2–3), 530–551. doi:10.1016/j.jhazmat.2009.05.044.

    Article  Google Scholar 

  • Gioti, E. M., Skalkos, D. C., Fiamegos, Y. C., & Stalikas, C. D. (2005). Single-drop liquid-phase microextraction for the determination of hypericin, pseudohypericin and hyperforin in biological fluids by high performance liquid chromatography. Journal of Chromatography A, 1093, 1–10. doi:10.1016/j.chroma.2005.07.038.

    Article  CAS  Google Scholar 

  • Hou, L., & Lee, H. K. (2004). Determination of pesticides in soil by liquid-phase microextraction and gas chromatography–mass spectrometry. Journal of Chromatography A, 1038(1–2), 37–42. doi:10.1016/j.chroma.2004.03.012.

    Article  CAS  Google Scholar 

  • Igunnu, E. T., & Chen, G. Z. (2012). Produced water treatment technologies. International Journal of Low-Carbon Technologies, 9(3), 157–177. doi:10.1093/ijlct/cts049.

    Article  Google Scholar 

  • King, A. J., Readman, J. W., & Zhou, J. L. (2004). Determination of polycyclic aromatic hydrocarbons in water by solid-phase microextraction–gas chromatography–mass spectrometry. Analytica Chimica Acta, 523(2), 259–267. doi:10.1016/j.aca.2004.07.050.

    Article  CAS  Google Scholar 

  • Ku, Y. C., Leong, M. I., Wang, W. T., & Huang, S. D. (2013). Up-And-down shaker-assisted ionic liquid-based dispersive liquid-liquid microextraction of benzophenone-type ultraviolet filters. Journal of Separation Science, 36, 1470–1477. doi:10.1002/jssc.201201108.

    Article  CAS  Google Scholar 

  • Lundstedt, T., Seifert, E., Abramo, L., Thelin, B., Nyström, Å., Pettersen, J., & Bergman, R. (1998). Experimental design and optimization. Chemometrics and Intelligent Laboratory Systems, 42(1), 3–40. doi:10.1016/S0169-7439(98)00065-3.

    Article  CAS  Google Scholar 

  • Luquedecastro, M., & Priegocapote, F. (2007). Ultrasound-assisted preparation of liquid samples. Talanta, 72(2), 321–334. doi:10.1016/j.talanta.2006.11.013.

    Article  CAS  Google Scholar 

  • Manoli, E., & Samara, C. (1999). Polycyclic aromatic hydrocarbons in natural waters: sources, occurrence and analysis. TrAC Trends in Analytical Chemistry, 18(6), 417–428. doi:10.1016/S0165-9936(99)00111-9.

    Article  CAS  Google Scholar 

  • Ozcan, S., Tor, A., & Aydin, M. E. (2010). Determination of polycyclic aromatic hydrocarbons in waters by ultrasound-assisted emulsification-microextraction and gas chromatography–mass spectrometry. Analytica Chimica Acta, 665(2), 193–199. doi:10.1016/j.aca.2010.03.047.

    Article  CAS  Google Scholar 

  • Pino, V., Ayala, J. H., Afonso, A. M., & González, V. (2002). Determination of polycyclic aromatic hydrocarbons in seawater by high-performance liquid chromatography with fluorescence detection following micelle-mediated preconcentration. Journal of Chromatography A, 949(1–2), 291–299. doi:10.1016/S0021-9673(01)01589-8.

    Article  CAS  Google Scholar 

  • Popp, P., Bauer, C., & Wennrich, L. (2001). Application of stir bar sorptive extraction in combination with column liquid chromatography for the determination of polycyclic aromatic hydrocarbons in water samples. Analytica Chimica Acta, 436(1), 1–9. doi:10.1016/S0003-2670(01)00895-9.

    Article  CAS  Google Scholar 

  • Psillakis, E., Mantzavinos, D., & Kalogerakis, N. (2004). Monitoring the sonochemical degradation of phthalate esters in water using solid-phase microextraction. Chemosphere, 54(7), 849–857. doi:10.1016/j.chemosphere.2003.09.039.

    Article  CAS  Google Scholar 

  • Rezaee, M., Assadi, Y., Hosseini, M. R. M., Aghaee, E., Ahmadi, F., & Berijani, S. (2006). Determination of organic compounds in water using dispersive liquid–liquid microextraction. Journal of Chromatography A, 1116(1), 1–9. doi:10.1016/j.chroma.2006.03.007.

  • Sanchez-Prado, L., Barro, R., Garcia-Jares, C., Llompart, M., Lores, M., Petrakis, C., et al. (2008). Sonochemical degradation of triclosan in water and wastewater. Ultrasonics Sonochemistry, 15(5), 689–694. doi:10.1016/j.ultsonch.2008.01.007.

    Article  CAS  Google Scholar 

  • Sarafraz-Yazdi, A., & Amiri, A. (2010). Liquid-phase microextraction. TrAC Trends in Analytical Chemistry., 29(1), 1–14. doi:10.1016/j.trac.2009.10.003.

    Article  CAS  Google Scholar 

  • Saraji, M., & Boroujeni, M. K. (2014). Recent developments in dispersive liquid-liquid microextraction. Analytical and Bioanalytical Chemistry, 406(8), 2027–2066. doi:10.1007/s00216-013-7467-z.

    Article  CAS  Google Scholar 

  • Song, X., Li, J., Liao, C., & Chen, L. (2011). Ultrasound-assisted dispersive liquid–liquid microextraction combined with low solvent consumption for determination of polycyclic aromatic hydrocarbons in seawater by GC–MS. Chromatographia, 74(1–2), 89–98. doi:10.1007/s10337-011-2048-9.

    Article  CAS  Google Scholar 

  • Titato, G. M., & Lanças, F. M. (2006). Optimization and validation of HPLC-UV-DAD and HPLC-APCI-MS methodologies for the determination of selected PAHs in water samples. Journal of Chromatographic Science, 44, 35–40. doi:10.1093/chromsci/44.1.35.

    Article  CAS  Google Scholar 

  • Tseng, W.-C., Chen, P.-S., & Huang, S.-D. (2014). Optimization of two different dispersive liquid-liquid microextraction methods followed by gas chromatography–mass spectrometry determination for polycyclic aromatic hydrocarbons (PAHs) analysis in water. Talanta, 120, 425–432. doi:10.1016/j.talanta.2013.11.073.

    Article  CAS  Google Scholar 

  • Usepa. (2000). Profile of the Oil and Gas Extraction Industry. USEPA Sector Notebook Project, EPA/310-R-(October), 155 pp. doi:EPA/310-R-99-006.

  • Wang, K. D., Chen, P. S., & Huang, S. D. (2014). Simultaneous derivatization and extraction of chlorophenols in water samples with up-and-down shaker-assisted dispersive liquid–liquid microextraction coupled with gas chromatography/mass spectrometric detection. Analytical and bioanalytical chemistry, 406(8), 2123–2131. doi:10.1007/s00216-013-7044-5.

  • Wu, Y., Xia, L., Chen, R., & Hu, B. (2008). Headspace single drop microextraction combined with HPLC for the determination of trace polycyclic aromatic hydrocarbons in environmental samples. Talanta, 74(4), 470–477. doi:10.1016/j.talanta.2007.05.057.

    Article  CAS  Google Scholar 

  • Wu, H., Lye, L. M., & Chen, B. (2012). A design of experiment aided sensitivity analysis and parameterization for hydrological modeling. Canadian Journal of Civil Engineering, 39(4), 460–472. doi:10.1139/l2012-017.

    Article  Google Scholar 

  • Yan, J., Wang, L., Fu, P. P., & Yu, H. (2004). Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the US EPA priority pollutant list. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 557(1), 99–108. doi:10.1016/j.mrgentox.2003.10.004.

    Article  CAS  Google Scholar 

  • Yiantzi, E., Psillakis, E., Tyrovola, K., & Kalogerakis, N. (2010). Vortex-assisted liquid-liquid microextraction of octylphenol, nonylphenol and bisphenol-A. Talanta, 80(5), 2057–2062. doi:10.1016/j.talanta.2009.11.005.

    Article  CAS  Google Scholar 

  • Zacharis, C. K., Christophoridis, C., & Fytianos, K. (2012). Vortex-assisted liquid-liquid microextraction combined with gas chromatography–mass spectrometry for the determination of organophosphate pesticides in environmental water samples and wines. Journal of Separation Science, 35(18), 2422–2429. doi:10.1002/jssc.201200309.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada (COOGER, DFO), and the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baiyu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Liu, B., Ping, J. et al. Vortex- and Shaker-Assisted Liquid–Liquid Microextraction (VSA-LLME) Coupled with Gas Chromatography and Mass Spectrometry (GC-MS) for Analysis of 16 Polycyclic Aromatic Hydrocarbons (PAHs) in Offshore Produced Water. Water Air Soil Pollut 226, 318 (2015). https://doi.org/10.1007/s11270-015-2575-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2575-3

Keywords

Navigation